• Title/Summary/Keyword: wind profile

Search Result 278, Processing Time 0.023 seconds

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

Wind velocity field during thunderstorms

  • Ponte, Jacinto Jr.;Riera, Jorge D.
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.287-300
    • /
    • 2007
  • Wind action is a factor of fundamental importance in the structural design of light or slender constructions. Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by meteorological phenomena such as Extratropical Storms (EPS) or Tropical Storms. Wind effects due to other phenomena, such as thunderstorms, and its combination with EPS winds in so-called squall lines, are simply neglected. In this paper a model that describes the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS) is proposed. The model is based on a semi empirical representation of an axially-symmetrical flow line pattern that describes a stationary field, modulated by a function that accounts for the evolution of the wind velocity with time. The model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters employed in the model are related to meteorological variables, which are susceptible of statistical assessment. A background wind is also considered, in order to account for the translational velocity of the thunderstorm, normally due to local wind conditions. When the translation of the TS is caused by an EPS, a squall line is produced, causing the highest wind velocities associated with TS events. The resulting vertical velocity profiles were also studied and compared with existing models, such as the profiles proposed by Vicroy, et al. (1992) and Wood and Kwok (1998). The present model predicts horizontal velocity profiles that depend on the distance to the storm center, effect not considered by previous models, although the various proposals are globally compatible. The model can be applied in any region of interest, once the relevant meteorological variables are known, to simulate the excitation due to TS winds in the design of transmission lines, long-span crossings, cable-stayed bridges, towers or similar structures.

Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method (FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교)

  • Kim, Ki-Ha;Kim, Dong-Hyun;Kwak, Young-Seob;Kim, Su-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.

A consistent FEM-Vlasov model for hyperbolic cooling towers on layered soil under unsymmetrical wind load

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.617-633
    • /
    • 2016
  • In this paper, the analysis of hyperbolic cooling tower on elastic subsoil exposed to unsymmetrical wind loading is presented. Modified Vlasov foundation model is used to determine the soil parameters as a function of vertical deformation profile within subsoil. The iterative parameter updating procedure involves the use of Open Application Programming Interface (OAPI) feature of SAP2000 to provide two way data flow during execution. A computing tool coded in MATLAB employing OAPI is used to perform the analysis of hyperbolic cooling tower with supporting columns over a hollow annular raft founded on elastic subsoil. The analysis of such complex soil-structure system is investigated under self-weight and unsymmetrical wind load. The response of the cooling tower on elastic subsoil is compared with that of a tower that its supporting raft foundation is treated as fixed at the base. The results show that the effect of subsoil on the behavior of cooling tower is considerable at the top and bottom of the wall as well as supporting columns and raft foundation. The application of a full-size cooling tower has demonstrated that the procedure is simple, fast and can easily be implemented in practice.

Optimal Operation Scheme of MicroGrid System based on Renewable Energy Resources (신재생 에너지원 기반의 마이크로그리드 최적운영 방안)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;Lee, Sang-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1467-1472
    • /
    • 2011
  • This paper presents an optimal operation of microgrid systems and considering a tie-lines capacities that concerned each grid. The microgrid system consists of a wind turbine, a diesel generator, and a fuel cell. An one day load profile and wind resource for wind turbine generator were used for the study. For the grid interconnection, tie-line capacities were applied as constraints. The capacity constraints of tie-lines in production cost analysis are very important issues in the operation and planning of microgrid. In optimization, the Harmony Search (HS) algorithm is used for solving the problem of microgrid system operation which a various generation resources are available to meet the customer load demand with minimum operating cost. The application of HS algorithm to optimal operation of microgrid proves its effectiveness to determine optimally the generating resources without any differences of load mismatch.

Design of Small-Scale Simulator for Verification of Wind Turbine Conrol (풍력터빈 제어 검증용 축소형 시뮬레이터 설계)

  • Hwang, Jin-Su;Lee, Ho-Chul;Won, Seoung-Young;Chun, Sung-Gu;Lee, Byung-Chul;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.55.1-55.1
    • /
    • 2011
  • 풍력터빈에 적용되는 제어로직에 대한 검증을 실험실 기반에서 검증하기 위해서는 바람 및 터빈에 대한 적절한 모델링이 선행되어야 한다. 특히 피치 및 토크제어에 대한 특성을 검증하기 위해서는 블레이드 공력특성 및 터빈의 동특성에 대한 반영이 필연적이다. 본 논문에서는 풍력터빈 적용 제어로직 검증을 위하여 대상터빈에 대한 스케일링 결과, 바람을 모사하기 위한 구동장치 동작 및 터빈 모사장치에 대한 설계 결과에 대하여 소개하도록 한다.

  • PDF

Demand Response Impact on Market Operator's Revenue and Load Profile of a Grid Connected with Wind Power Plants

  • Tahmasebi, Mehrdad;Pasupuleti, Jagadeesh
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • Economic properties of an integrated wind power plant (WPP) and the demand response (DR) programs in the sample electricity market are studied. Time of use (TOU) and direct load control (DLC) are two of the DR programs that are applied in the system. The influences of these methods and the incentive payments by market operator's (MOs) with variable elasticity are studied. It is observed that DR with TOU and DLC programs together yields better revenue and energy saving for MOs.

Wind Tunnel Experiments for Studying Atmospheric Dispersion in the Complex Terrain II. Gaussian Modeling of Experiments in a Moutainous Area (복잡한 지형내 오염물질의 대기확산 풍동실험 I I. 산지지형 실험의 Gaussian 모델링)

  • 김영성;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 1995
  • Predictability of a Gaussian model, ISCST2 was assessed by scaling up wind tunnel experiments with a 1/3,000 terrain model to the real scale. Concentration profiles obtained from the flat-terrain experiment in the neutral condition were estimated to be in agreement with the calculated ones from ISCST2 in the stability class A, but the difference between the two was still large. Concentration profiles from the mountainous-terrain experiments were better fitted to the calculated ones primarily because in the experiment, concentration behind the source was raised due to the effect of a hill in the upstream side. Model prediction was improved with including the downwash effect of buildings and the hill, but overall concentration profiles were not much different from a typical Gaussian profile. While concentration profiles in the experiments were changed with local flows by varying the wind direction and the topography, those from the Gaussian modeling were mot freely changed together with these variations.

  • PDF

NUMERICAL SIMULATION OF WIND-DRIVEN FIRE FLUMES

  • Kohyu Satoh;Yang, K.T.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.327-334
    • /
    • 1997
  • In many large urban-fire scenarios one of the critical issues is to attempt to protect the lives of fire fighters in helicopters deployed to flying over the fires and also the lives of people trapped in open areas downwind of the fires such as in parks. The strategies of such protection measures depend significantly on our knowledge of the size and extent of such fires as affected by the prevailing winds. In this study, the shape or profile of the fire plume typical of large urban fires, as affected by a steady unidirectional wind with or without imposing a shear flow on the fire plume, has been simulated numerically by a field model. The results show that the simulations provide realistic flame profiles and at least qualitatively, the same flame dynamics when compared to those from the experiments, and that the fire plumes are sensitive to small variations in the asymmetry of the wind shears, including the appearance of swirling flames within the fire plumes.

  • PDF

Nature of Fe II fluorescent lines in Luminous Blue Variables

  • Lee, Jae-Joon;Chang, Seok-Jun;Seon, Kwang-il;Kim, Hyun-Jeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2020
  • Luminous blue variables (LBVs) are massive evolved stars that show unpredictable photometric and spectral variation. It is generally assumed that they undergo one or more of large eruptions. We have obtained high dispersion NIR spectra of several LBVs with Immersion GRating INfrared Spectrometer (IGRINS). One notable feature in their IGRINS spectra is the existence of broad lines (~ a few hundred km/s) with unusual boxy profile. They are fluorescent lines of Fe II by Lyman α photons in the stellar wind. However, modeling of these lines with radiative transfer code CMFGEN predicts much weaker line strength. We propose that incorporating broadening of Lyman α line by scattering processes in dense wind can enhance the Fe II fluorescent lines. We further discuss how these Fe II fluorescent lines can be used to characterize massive LBV wind.

  • PDF