• Title/Summary/Keyword: wind power generator

Search Result 709, Processing Time 0.037 seconds

Analysis of doubly-fed induction generator based wind power system for voltage sag (배전선로 전압강하에 대한 이중 여자 풍력발전시스템 특성 해석)

  • Cha, Han-Ju;Lee, Sang-Hoey
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1234-1235
    • /
    • 2007
  • This paper represents the generating principles of the doubly-fed induction generator (DFIG) based wind power system and developes a simulation model of DFIG by using PSCAD/EMTDC. In addition, this paper analyzes the steady state operation and the transient operation during the voltage sags in the power common coupling. The voltage sags are occurred by three phase line-to-ground faults and full-voltage startup of an induction motor in the simulation.

  • PDF

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

Development of a 300W Generator for Lightweight Wind Turbine

  • Lee, Hee-Kune;Lee, Hee-Joon;Kim, Sun-Hyung
    • The Journal of Korean Institute of Information Technology
    • /
    • v.15 no.12
    • /
    • pp.181-188
    • /
    • 2017
  • As a population of leisure activities grows and diversifies, there is a great demand for portable and environment-friendly power generation systems. A small wind power generation system is emerging as a suitable power generation equipment to meet these needs. The most important thing when developing a small portable wind turbine is to reduce the weight of the generator and increase the efficiency. The existing 300W wind turbine generator weighs about 10kg, which is heavy to carry. Therefore, a new generator weighing less than 4kg to make it easy to carry with high efficiency has been developed. In addition, considering complicated characteristics of wind volume and topography of Korea, a small wind turbine that can be used in urban and rural areas individually was constructed. Through basic designing and optimization, the lightweight and efficient generator was manufactured. It is a 300W wind turbine designed and fabricated with reduced weight as a prototype. The average output voltage of the generator was 24.7V at 900rpm no-load test. On a load test with the average line voltage 36.8V and the average phase current 2.62A, when the mechanical input was 339.84W, an average voltage output of the generator was measured as 289.5W with efficiency of 85.18%. The generator weight was 3.84kg.

DFIG Wind Power System with a DDPWM Controlled Matrix Converter

  • Lee, Ji-Heon;Jeong, Jong-Kyou;Han, Byung-Moon;Choi, Nam-Sup;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.299-306
    • /
    • 2010
  • This paper proposes a new doubly-fed induction generator (DFIG) system using a matrix converter controlled by direct duty ratio pulse-width modulation (DDPWM) scheme. DDPWM is a recently proposed carrier based modulation strategy for matrix converters which employs a triangular carrier and voltage references in a voltage source inverter. By using DDPWM, the matrix converter can directly and effectively generate rotor voltages following the voltage references within the closed control loop. The operation of the proposed DFIG system was verified through computer simulation and experimental works with a hardware simulator of a wind power turbine, which was built using a motor-generator set with vector drive. The simulation and experimental results confirm that a matrix converter with a DDPWM modulation scheme can be effectively applied for a DFIG wind power system.

Damping for Wind Turbine Electrically Excited Synchronous Generators

  • Tianyu, Wang;Guojie, Li;Yu, Zhang;Chen, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.801-809
    • /
    • 2016
  • The electrically excited synchronous generator (EESG) is applied in wind turbine systems recently. In an EESG control system, electrical torque is affected by stator flux and rotor current. So the control system is more complicated than that of the permanent-magnet synchronous generator (PMSG). Thus, the higher demanding of the control system is required especially in case of wind turbine mechanical resonance. In this paper, the mechanism of rotor speed resonant phenomenon is introduced from the viewpoint of mechanics firstly, and the characteristics of an effective damping torque are illustrated through system eigenvalues analysis. Considering the variables are tightly coupled, the four-order small signal equation for torque is derived considering stator and rotor control systems with regulators, and the bode plot of the closed loop transfer function is analyzed. According to the four-order mathematical equation, the stator flux, stator current, and electrical torque responses are derived by torque reference step and ramp in MATLAB from a pure mathematical deduction, which is identical with the responses in PSCAD/EMTDC simulation results. At last, the simulation studies are carried out in PSCAD software package to verify the resonant damping control strategy used in the EESG wind turbine system.

Power Fluctuation Reduction of Pitch-Regulated MW-Class PMSG based WTG System by Controlling Kinetic Energy

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Yona, Atsushi;Senjyu, Tomonobu;Saber, Ahmed Yousuf
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.116-124
    • /
    • 2012
  • Wind is an abundant source of natural energy which can be utilized to generate power. Wind velocity does not remain constant, and as a result the output power of wind turbine generators (WTGs) fluctuates. To reduce the fluctuation, different approaches are already being proposed, such as energy storage devices, electric double layer capacitors, flywheels, and so on. These methods are effective but require a significant extra cost to installation and maintenance. This paper proposes to reduce output power fluctuation by controlling kinetic energy of a WTG system. A MW-class pitch-regulated permanent magnet synchronous generator (PMSG) is introduced to apply a power fluctuation reducing method. The major advantage of this proposed method is that, an additional energy storage system is not required to control the power fluctuation. Additionally, the proposed method can mitigate shaft stress of a WTG system. Which is reflected in an enhanced reliability of the wind turbine. Moreover, the proposed method can be changed to the maximum power point tracking (MPPT) control method by adjusting an averaging time. The proposed power smoothing control is compared with the MPPT control method and verified by using the MATLAB SIMULINK environment.

Power Control of Small Wind Power System (소형 풍력발전시스템의 출력제어)

  • Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Cho, Hwan-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1066_1067
    • /
    • 2009
  • Wind power is one of most promising renewable energy. The output capacity of large wind turbine has been increased for off-shore application. Number of installation of small wind turbine also has been increased for the stand-alone and off-grid application of remote area and recently small wind turbine equipped with lamp on the pole is used for street lamp. Maximum wind energy must be extracted by wind turbine within rated wind speed. Power must be controlled to protect the system such as blade, generator, and power system above the rated wind speed. In this paper, small wind power system of 800W rating for battery charging is implemented and output power control by furling system is verified at wind tunnel test.

  • PDF

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

Small Wind Turbine Installed at the University Building Rooftop for Green Energy Utillization (그린에너지 활용을 위한 대학건물 옥상설치형 소형풍력발전)

  • Lee, You Suck;Kim, Jae Yong
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • As the world supply of fossil fuel sources decreases, the need for efficient energy consevation and develping green energy technologies becomes critical. Because of the high cost of the foundation for large turbines and optional high wind speed (over 12 m/s), it is very difficult to be located at inland city. For the solution above mentioned problem, we have been experimented about that not only using the adaption of wind power system on buildings for improving turbine efficiency, but also applying a wound rotor type induction generator for a small wind turbine.In this research, we try to find out the wind direction and wind speed those were measured every 1 min., during operation period, using the anemometers which consist of horizontally spinning cups on a vertical post. Performance testing for small wind turbine generating system was carried out by using the induction motor and invertor. Finally, we measured the power of 1 kW wind turbine system with the clamp meter and a voltmeter.

Dynamic Response of a 2.75MW Wind Turbine Applying Torque Control Method Based on Torque-Mode (토크모드 기반의 토크 제어 방법을 적용한 2.75MW 풍력터빈의 동적 응답)

  • Lim, Chae-Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Torque control methods of wind turbine are mainly classified into two methods: torque-mode and speed-mode methods. The traditional torque-mode method, in which generator torque proportional to square of generator speed is determined, has been chosen in many wind turbines but its response is slower as they are larger in multi-MW size. Torque control methods based on both speed-mode and torque-mode can be used to make response of wind turbine faster. In this paper, two torque control methods based on the traditional torque-mode method are applied to a 2.75 MW wind turbine. It is shown through some simulation results for real turbulence wind speeds that torque control method based on torque-mode has the merit of reducing fluctuations of generated power than PI controller based on speed-mode.