• Title/Summary/Keyword: wind power generator

Search Result 702, Processing Time 0.029 seconds

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Control Algorithm for Wind Turbine Simulator with Variable Inertia Emulation (가변관성 모의 기능을 가진 풍력발전기 시뮬레이터의 제어 알고리즘)

  • Jeong, Byoung-Chang;Jeong, Se-Jong;Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.170-173
    • /
    • 2002
  • A variable speed wind turbine simulator is designed and implemented for the simulation of wind power generation system. The control algorithm decides the shaft torque delivered to generator taking into consideration the wind speed, the generator rpm, and the rotor blade inertia. It is shown that the proposed control algorithm can emulate the dynamic behavior of actual wind turbine through simulations and experimental.

  • PDF

Design and Analysis of Direct-Coupled, Small-Scaled Permanent Magnet Generator for Wind Power Application (풍력발전을 위한 소용량 영구자석형 동기발전기의 설계 및 해석)

  • Kim, Il-Jung;Choi, Jang-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.39-51
    • /
    • 2014
  • This paper deals with design of a direct-coupled, small-scaled permanent magnet generator (PMG) for wind power application. First, this paper determines rated power and speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit including slot opening, teeth width and yoke thickness is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot considering winding packing factor. Finally, finite element (FE) method is employed in analyzing the details of the designed PMG and, test results such as back-emf measurements are given to confirm the design.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

Fixed speed wind power generation system modeling and transient state stabilization method using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 고정속 풍력발전시스템 모델링 및 과도상태 안정화기법)

  • Kim, Young-Ju;Park, Dae-Jin;Ali, Mohd Hasan;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1178-1179
    • /
    • 2008
  • This paper describes a modeling of fixed speed wind power generation system which comprise of wind turbine, generator and grid. The wind turbine is based on MOD-2, which is IEEE standard wind turbine, and includes a component using wind turbine characteristic equation. Fixed speed induction generator is directly connected to grid, so the variation of wind speed has effects on the electrical torque and electrical output power. Therefore the power control mode pitch control system is necessary for aerodynamic control of the blades. But the power control mode does not operate at the fault condition. So it is required some methods to control the rotor speed at transient state for stabilization of wind power system. In this paper, simulation model of a fixed speed wind power generation system based on the PSCAD/EMTDC is presented and implemented under the real weather conditions. Also, a new pitch control system is proposed to stabilize the wind power system at the fault condition. The validity of the stabilization method is demonstrated with the results produced through sets of simulation.

  • PDF

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

A Speed and Power Control of DFIG Using the Exciting Frequency for Wind Power Generating (풍력발전용 권선형 유도발전기의 회전자 여자주파수를 이용한 속도와 출력제어)

  • Lee, U-Seok;O, Cheol-Su
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.349-356
    • /
    • 1999
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFIG) has good adaptivity for that purpose. This paper deals with the speed and power control using the Grid connected DFIG in the super-synchronous speed regions, by controlling frequency and voltage fed to the rotor. Power flow of the DFIG and steady-state algebraic equations of the equivalent circuit are analyzed. For the speed control analysis, torque simulation is performed whereby the different slip between operating motor driving frequency and synchronous frequency of M-G system applied. To keep the output rating of the generator, the exciting frequency and voltage attenuation are applied.

  • PDF

Firing Angle Control of Soft Starter for Reduction of Inrush Current during Grid Connection of Induction-type Wind Generator (유도형 풍력발전기 계통 연계시 돌입전류 저감을 위한 소프트 스타터 점호각 제어)

  • Song Seung-Ho;Kwon Tae-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.397-402
    • /
    • 2005
  • A new control algorithm of soft starter is proposed for the reduction of the inrush current during the grid connection of the induction-type wind power generator. Currently, the fixed speed wind turbine using induction generator is the most popular wind generation system in Korea. It is shown that the amount of inrush current mainly depends on the control algorithm of the soft starter, a thyristor-based grid connection device. For the simulation study, a 600kw wind turbine simulation model is developed and the transient waveforms are investigated with conventional md proposed methods. Also experimental results using 3.7kW experimental set-up show that the peak value of inrush current is reduced about 20$\%$ using proposed algorithm.

Design of a Small-Scale Motor-Generator System for a Large Wind Turbine (대형 풍력발전기용 소형 모터-발전기 시스템 설계)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.