• 제목/요약/키워드: wind park

검색결과 2,096건 처리시간 0.032초

Design and stress analysis of composite helical rotor and wind power tree (복합재를 이용한 헬리컬 로터와 풍력터빈 나무 설계 및 구조해석)

  • Ha, Min-Su;Han, Kyoung-Tae;Choi, Kyoung-Ho;Park, Young-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.59-65
    • /
    • 2013
  • The objective of this paper is to analyze the structure of the wind power tree using a helical type wind turbine. The blades of a helical rotor is designed with a composite material. The structural analyses of a helical rotor have been implemented by finite element method. The structural analyses of the wind power tree which support four helical rotor, have been performed under a wind load, a rotational velocity of a rotor, and dead weight.

Suitability Review on Development Plans of Offshore Wind Farm Based on National Wind Map and Geographic Information (국가바람지도 및 국가지리정보에 의한 해상풍력단지 개발계획의 적합성 검토)

  • Kim, Hyun-Goo;Hwang, Hyo-Jung;Song, Kyu-Bong;Hwang, Sun-Young;Yun, Jin-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.534-535
    • /
    • 2009
  • The objective of this research aims preliminary assessments of the proposed plans of offshore wind farm development based on the recently established national offshore wind map and suitability assessment system of offshore wind farm. Incheon Mueodo, Busan Dadaepo-Gadukdo, Sinangun Haeodo have been assessed considering geographic constraints such as water depth, offshore distance, national park, grid connection, and meteorological constraint such as wind power density and wind direction. According to the assessment, Mueodo plan has a weak point in grid connection and several geographic limitations are involved in Haeodo plan while Dadaepo-Gadukdo seems the most possible plan among the review cases. Because of limited assessment in this research, more detail and further consideration are necessary to make a decision of a feasibility project at proposed sites.

  • PDF

Load analysis of an offshore monopile wind turbine using fully-coupled simulation (Fully-coupled 시뮬레이션을 이용한 해상 monopile 풍력 발전기의 응력해석)

  • Shi, Wei;Park, Hyun-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.480-485
    • /
    • 2009
  • Offshore wind energy is gaining more attention. Ensuring proper design of offshore wind turbines and wind farms require knowledge of the external conditions in which the turbines and associated facilities are to operate. In this work, a three-bladed 5MW upwind wind turbine, which is supported by the monopile foundation, is studied by use of fully coupled aero-hydro-servo-elastic commercial simulation tool, 'GH-Bladed'$^{(R)}$. Specification of the structures are chosen from the OC3 (Offshore Code Comparison Collaboration) under "IEA Wind Annex XXIII-subtask2". The primary external conditions due to wind and waves are simulated. Design Load case 5.2 is investigated in this work. The steady state power curve and power production loads are evaluated. Comparison between different codes is made.

  • PDF

Economic Evaluation of Offshore Wind Farm in Korea (국내 해상풍력발전단지의 경제성 분석)

  • Min, Chang-Gi;Hur, Don;Park, Jong Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제63권9호
    • /
    • pp.1192-1198
    • /
    • 2014
  • With an increase in the penetration of offshore wind farm, the need of an accurate economic evaluation of offshore wind farm has become crucial. This paper presents an economic evaluation method of offshore wind farm in Korea reflecting the cost of offshore wind farm infrastructure (offshore substation, submarine cable and foundation) in its cost model. Each cost of offshore substation, submarine cable, and foundation is represented as a function of installed capacity, distance to shore, and water level, respectively. We have applied the method to the case study of offshore in Jeju Island and analyzed the economics under various conditions. The results show that the distance to shore is of importance in economics of offshore wind farm.

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Probabilistic Production Cost Credit Evaluation of Wind Turbine Generators (풍력발전기의 확률론적 발전비용 절감기여도 평가)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권12호
    • /
    • pp.2153-2160
    • /
    • 2008
  • This paper develops an algorithm for probabilistic production cost credit evaluation of wind turbine generators(WTG) with multi-state. Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Wind energy is one of the most successful sources of renewable energy for the production of electrical energy. Case study demonstrates that the wind speed credit in view point of economics can be assessed by using the proposed methodology.

Study on the Simulation of Grid Connection Type Wind Power System using RTDS (RTDS를 이용한 계통연계형 풍력발전시스템 시뮬레이션에 관한 연구)

  • Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.268-270
    • /
    • 2005
  • A tendency to erect more wind turbines can be observed in order to reduce the environmental consequences of electric power generation. As a result of this, in the near future, wind turbines may start to influence the behavior of electric power systems by interacting with conventional generation and loads. Therefore, wind turbine models that can be integrated into power system simulation software are needed. In this paper, a model that can be used to represent all types of variable speed wind turbines in power system simulations is presented. Wind turbine characteristic equation of a wind turbine is implemented in the RTDS, and the real data of weather conditions are interfaced to the RTDS for the purpose of real time simulation of grid-connection wind power system. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results show that the cost effective verifying for the efficiency and stability of WPGS.

  • PDF

Wind Turbine Simulators Considering Turbine Dynamic Characteristics (터빈의 동특성을 고려한 풍력 터빈 시뮬레이터)

  • Park, Hong-Geuk;Abo-Khalil, Ahmed. G.;Lee, Dong-Choon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권4호
    • /
    • pp.617-624
    • /
    • 2008
  • This paper proposes design and implementation of wind turbine simulators which incorporate the turbine dynamic characteristics. At first, the turbine output characteristic in steady state is modelled as a function of wind speed and then dynamic characteristics are modelled such as pitch angle control, torsional vibration, tower shadow effect, wind shear effect, and inertia effect. In addition, a wind speed simulator is developed which can generate the real wind speed pattern. The wind turbine simulator is implemented with 3[kW] M-G set(cage-type induction motor coupled with doubly-fed induction generator) at laboratory.

EXPERIMENT AND SIMULATION OF A WIND-DRIVEN REVERSE OSMOSIS DESALINATION SYSTEM

  • Park, Sang-Jin;Clark C.K. Liu
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.1-17
    • /
    • 2003
  • A mathematical model was developed to simulate the performance of a prototype wind-powered reverse osmosis desalination system. The model consists of two sub-models operated in a series. The first sub-model is the wind-energy conversion sub-model, which has wind energy and feed water as its input and pressurized feed water as its output. The second sub-model is a reverse osmosis (RO) process sub-model, with pressurized feed water as its input and the flow and salinity of the product water or permeate as its output. Model coefficients were determined based on field experiments of a prototype wind powered RO desalination system of the University of Hawaii, from June to December 2001. The mathematical model developed by this study predicts the performance of wind-powered RO desalination systems under different design conditions. The system optimization is achieved using a linear programming approach. Based on the results of system optimization, a design guide is prepared, which can be used by both manufacturer and end-user of the wind-driven reverse osmosis system.

  • PDF

LQR control of Wind Turbine (풍력터빈의 LQR 제어)

  • Nam, Yoon-su;Jo, Jang-whan;Lim, Chang-Hee;Park, Sung-su;Bottasso, Carlo L.
    • Journal of Wind Energy
    • /
    • 제2권1호
    • /
    • pp.74-81
    • /
    • 2011
  • This paper deals with the application of LQ control to the power curve tracking control of wind turbine. However, two more additional tasks are required to apply the LQR theory to wind turbine control. One is the tracking problem instead of regulation, because the wind turbine is controlled as variable speed and variable pitch. The other is LQ integral control., because the rotor speed should be tightly controlled without any steady state error. Starting from the analysis of wind characteristics, design requirement of a wind turbine control system is defined. A design procedure of LQ tracking with integral control is introduced. The performance of LQ tracking system is analyzed and evaluated by numeric simulation.