• Title/Summary/Keyword: wind model

Search Result 3,605, Processing Time 0.024 seconds

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

Development of PMSG Wind Power System Model using Wind Turbine Simulator and Matrix Converter (풍력터빈시뮬레이터와 매트릭스 컨버터를 적용한 PMSG 풍력발전 시스템 모델 개발)

  • Yun, Dong-Jin;Han, Byung-Moon;Cha, Han-Ju;Li, Yu-Long;Choi, Nam-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1130-1137
    • /
    • 2009
  • This paper describes a scaled model development of PMSG wind power system using wind turbine simulator and matrix converter. The wind turbine simulator, which consists of an induction motor with vector drive, calculates the output torque of a specific wind turbine using simulation software and sends the torque signal to the vector drive after scaling down the calculated value. The operational feasibility of interconnected PMSG system with matrix converter was verified by computer simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was conformed by experimental works with a laboratory scaled-model of wind power system. The simulation and experimental results confirm that matrix converter can be effectively applied for the PMSG wind power system.

Wind-induced response and loads for the Confederation Bridge -Part II: derivation of wind loads

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.393-409
    • /
    • 2013
  • This paper uses ten years of on-site monitoring data for the Confederation Bridge to derive wind loads and investigate whether the bridge has experienced its design wind force effects since its completion in 1997. The load effects derived using loads from the on-site monitoring data are compared to the load effects derived using loads from the 1994 and 2009 wind tunnel aerodynamic model tests. The research shows, for the first time, that the aerodynamic model-based methodology originally developed in 1994 is a very accurate method for deriving wind loads for structural design. The research also confirms that the bridge has not experienced its specified (i.e., unfactored) wind force effects since it was opened to traffic in 1997, even during the most severe event that has occurred during this period.

A Study on the Estimation Model of Cost of Energy for Wind Turbines (풍력발전기의 에너지 비용 산출에 대한 고찰)

  • Chung, Taeyoung;Moon, Seokjun;Rim, Chaewhan
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.3-12
    • /
    • 2012
  • Large offshore wind farms have actively been developed in order to meet the needs for wind energy since the land-based wind farms have almost been fully developed especially in Europe. The key problem for the construction of offshore wind farms may be on the high cost of energy compared to land-based ones. NREL (National Renewable Energy Laboratory) has developed a spreadsheet-based tool to estimate the cost of wind-generated electricity from both land-based and offshore wind turbines. Component formulas for various kinds and scales of wind turbines were made using available field data. In this paper, this NREL estimation model is introduced and applied to the offshore wind turbines now under designing or in production in Korea, and the result is discussed.

A Study on the Development of Wind and Wave Model of Typhoon

  • Jin Guo-Zhu;Song Chae-Uk;Seol Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.9
    • /
    • pp.815-820
    • /
    • 2004
  • In this paper, after analyzing other models with their advantages and disadvantages, we proposed a simple parametric model for calculating wind speed & direction and wave height & direction at any location around the typhoon at sea. The proposed wind-field model of typhoon is asymmetric, and consists of a circular symmetric wind-field caused by the pressure gradient of stationary typhoon and a moving wind-field caused by the movement of typhoon. By verifying this model through observed data, we found that it is accurate enough to develop the simulation software for training students and seafarers so as to take appropriate actions while being faced with the typhoon at sea.

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong;Wang, Jingcheng;Gu, Ming
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.261-282
    • /
    • 2017
  • The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.

The effect of vegetation parameter characteristics of the multi-layer vegetation model on wind for numerical simulation of micro-meteorology (미기상 수치모의를 위한 다층식생모델의 식생 팍라메타가 바람에 미치는 영향)

  • 오은주;이화운;정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.605-613
    • /
    • 2003
  • In order to make use of the protection effect against wind by the vegetation, it examined whether it should make what vegetation form and arrangement using the 2-dimensional non-hydrostatic model. When the foliage shielding factor increases, it becomes hard to take in protection effect against wind in a residential section. When it makes height of vegetation high, it becomes hard to take in protection effect against wind with height. In the comparison in the case where vegetation high is gradually made low toward wind-stream from a vegetation, and the case of making it low gradually, although former tends to receive the protection effect against wind by the vegetation, attenuation of wind velicity becomes large. In the comparison in the case where foliage shielding factor and distribution of density of leaf are gathered gradually toward wind-stream from a vegetation. It has been understood to evaluate to height the influence that the vegetation multi-layer model by which the heat revenue and expenditure in the direction of the vegetation height is considered is used, and to characterize the vegetation group by the parameter setting.

A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part1 (풍력터빈의 구조특성 평가에 관한 연구-Part1)

  • Lee, Kyoung-Soo;Huque, Ziaul;Kommalapati, Raghava;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.47-54
    • /
    • 2014
  • This paper presents the structural model development and verification processes of wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. The wind turbine assembled by blades, rotor, nacelle and tower. The wind blade connected to rotor. To make the whole turbine structural model, the mass and stiffness properties of all parts should be clear and given. However the wind blade, hub, nacelle, rotor and power generating machinery parts have difficulties to define the material properties because of the composite and assembling nature of that. Nowadays to increase the power generating coefficient and cost efficiency, the highly accurate aerodynamic loading evaluating technique should be developed. The Fluid-Structure Interaction (FSI) is the emerging new way to evaluate the aerodynamic force on the rotating wind blade. To perform the FSI analysis, the fluid and structural model which are sharing the associated interface topology have to be provided. In this paper, the structural model of blade development and verifying processes have been explained for Part1. In following Part2 paper, the processes of whole turbine system will be discussing.

Sensitivity Evaluation of Wind Fields in Surface Layer by WRF-PBL and LSM Parameterizations (WRF 모델을 이용한 지표층 바람장의 대기경계층 모수화와 지면모델 민감도 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • Sensitivity experiments of WRF model using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations are evaluated for prediction of wind fields within the surface layer. The experiments were performed with three PBL schemes (YSU, Pleim, MYJ) in combination with three land surface models (Noah, RUC, Pleim). The WRF model was conducted on a nested grid from 27-km to 1-km horizontal resolution. The simulations validated wind speed and direction at 10 m and 80 m above ground level at a 1-km spatial resolution over the South Korea. Statistical verification results indicate that Pleim and YSU PBL schemes are in good agreement with observations at 10 m above ground level, while the MYJ scheme produced predictions similar to the observed wind speed at 80 m above ground level. LSM comparisons indicate that the RUC model performs best in predicting 10-m and 80-m wind speed. It is found that MYJ (PBL) - RUC (LSM) simulations yielded the best results for wind field in the surface layer. The choice of PBL and LSM parameterization will contribute to more accurate wind predictions for air quality studies and wind power using WRF.