• Title/Summary/Keyword: wind intensity

Search Result 437, Processing Time 0.024 seconds

Effect of trunk length on the flow around a fir tree

  • Lee, Jin-Pyung;Lee, Eui-Jae;Lee, Sang-Joon
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.69-82
    • /
    • 2014
  • Flow around a small white fir tree was investigated with varying the length of the bottom trunk (hereafter referred to as bottom gap). The velocity fields around the tree, which was placed in a closed-type wind tunnel test section, were quantitatively measured using particle image velocimetry (PIV) technique. Three different flow regions are observed behind the tree due to the bottom gap effect. Each flow region exhibits a different flow structure as a function of the bottom gap ratio. Depending on the gap ratio, the aerodynamic porosity of the tree changes and the different turbulence structure is induced. As the gap ratio increases, the maximum turbulence intensity is increased as well. However, the location of the local maximum turbulence intensity is nearly invariant. These changes in the flow and turbulence structures around a tree due to the bottom gap variation significantly affect the shelter effect of the tree. The wind-speed reduction is increased and the height of the maximum wind-speed reduction is decreased, as the gap ratio decreases.

Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load (재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가)

  • Hwang, Jin Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, used by the boundary layer wind tunnel test, have conducted a series of wind tunnel experiments, i.e. test the mean velocity profile regarding the surface roughness, turbulence intensity and power spectrum measured by augmentation device. After that, to provide data relevant for the preliminary design step of tall building hazard fluctuating wind loads may be obtained fluctuating pressure coefficients, fluctuating pressure spectrum, autocorrelation coefficients by the boundary layer wind tunnel test. From the results of experiments, this study can be obtained conclusions as follows. 1. We know the fact that the mean velocity profile and the turbulence intensity are well fitted natural wind flow in the boundary layer wind tunnel. 2. The satisfactory agreement of velocity spectrum can be obtained from the compare of fluctuating power spectrum and Von Karman spectrum. 3. We know the fact that the fluctuating pressure spectrums distributed peak at 0.01 Hz-0.1 Hz in the windward surfaces and at 0.1 Hz in the leeward surfaces. 4. We know the fact that the autocorrelation coefficients distributed stationary random processes with application time of hazard fluctuating wind loads.

Correlation analysis of the wind of a cable-stayed bridge based on field monitoring

  • Li, Hui;Laima, Shujin;Li, Na;Ou, Jinping;Duan, Zhondong
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.529-556
    • /
    • 2010
  • This paper investigates the correlation of wind characteristics monitored on a cable-stayed bridge. Total five anemoscopes are implemented into the bridge. Two out of 5 anemoscopes in inflow and two out of 5 anemoscopes in wake-flow along the longitudinal direction of the bridge are installed. Four anemoscopes are respectively distributed at two cross-sections. Another anemoscope is installed at the top of the tower. The correlation of mean wind speed and direction, power spectral density, the turbulent intensity and integral length of wind in flow at two cross-sections are investigated. In addition, considering the non-stationary characteristics of wind, the spatial correlation in time-frequency is analyzed using wavelet transform and different phenomenon from those obtained through FFT is observed. The time-frequency analysis further indicates that intermittence, coherence structures and self-similar structures are distinctly observed from fluctuant wind. The flow characteristics around the bridge deck at two positions are also investigated using the field measurement. The results indicate that the mean wind speed decrease when the flow passing through the deck, but the turbulence intensity become much larger and the turbulence integral lengths become much smaller compared with those of inflow. The relationship of RMS (root mean square) of wake-flow and the mean wind speed of inflow is approximately linear. The special structures of wake-flow in time-frequency domain are also analyzed using wavelet transform, which aids to reveal the forming process of wake-flow.

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

Computational fluid dynamics simulation of pedestrian wind in urban area with the effects of tree

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.147-158
    • /
    • 2006
  • The purpose of this paper is to find a more accurate method to evaluate pedestrian wind by computational fluid dynamics approach. Previous computational fluid dynamics studies of wind environmental problems were mostly performed by simplified models, which only use simple geometric shapes, such as cubes and cylinders, to represent buildings and structures. However, to have more accurate and complete evaluation results, various shapes of blocking objects, such as trees, should also be taken into consideration. The aerodynamic effects of these various shapes of objects can decrease wind velocity and increase turbulence intensity. Previous studies simply omitted the errors generated from these various shapes of blocking objects. Adding real geometrical trees to the numerical models makes the calculating domain of CFD very complicated due to geometry generation and grid meshing problems. In this case the function of Porous Media Condition can solve the problem by adding trees into numerical models without increasing the mesh grids. The comparison results between numerical and wind tunnel model are close if the parameters of porous media condition are well adjusted.

A Study on Ventilation Performance driven by Wind Force in Underground Parking Lots of Apartment - Influence of Opening Size and Surrounding Building - (공동주택 지하주차장의 풍력환기 성능에 관한 연구 - 환기구 면적 및 주변건물의 영향 -)

  • Roh, Ji Woong
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • As a series of studies about natural ventilation driven by wind in basement parking lots of apartment, the influence of opening size and surrounding buildings on ventilation rate was analyzed. Natural ventilation in underground parking lots almost rely on wind than temperature difference. To investigate natural ventilation driven by wind, wind tunnel tests by using scale model and tracer gas method were conducted. $CO_2$-gas concentration was measured, natural ventilation rates were calculated. The experimental results showed that the natural ventilation rate is more reliable to wind direction and surrounding building than opening size and distance between buildings. It was verified that surrounding buildings play a principal role in increasing air flow rate by accelerating wind speed, and growing turbulence intensity. And it showed that ventilation performance is able to be increased by oblique wind to entrance ramp than head on wind in underground parking lots with surrounding buildings.

Effective technique to analyze transmission line conductors under high intensity winds

  • Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.235-252
    • /
    • 2014
  • An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

Investigation of wind-turbine wake characteristics in ideal turbulent inflow (이상 난류 조건에서의 풍력 터빈 후류 특성 연구)

  • Na, Jisung;Ko, Seungchul;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.47-51
    • /
    • 2017
  • In this study, we investigate the wake characteristics in laminar inflow and two different turbulent inflow cases. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM) and turbulent inflow of Turbsim. We perform the quantitative analysis of velocity deficit and turbulent intensity in laminar inflow case and turbulent inflow case with different turbulent intensity. In turbulent inflow, unsteady strong wake recovery which is highly fluctuated in time. Normalized power in turbulent inflow case is also highly fluctuated with unsteady wake recovery, while that in laminar inflow has quasi steady characteristic in power generation.

Peak Net Pressure Coefficients for Cladding Design of Retractable Dome Roofs according to Rise-Span Ratio (라이즈-스팬 비에 따른 개폐식 돔 지붕의 외장재 설계용 피크순압력계수)

  • Cheon, Dong-Jin;Kim, Yong-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.101-109
    • /
    • 2024
  • In this study, the characteristics of wind pressure distribution on circular retractable dome roofs with a low rise-to-span ratio were analyzed under various approaching flow conditions by obtaining and analyzing wind pressures under three different turbulent boundary layers. Compared to the results of previous studies with a rise-to-span ratio of 0.1, it was confirmed that a lower rise-to-span ratio increases the reattachment length of the separated approaching flow, thereby increasing the influence of negative pressure. Additionally, it was found that wind pressures varied significantly according to the characteristics of the turbulence intensity. Based on these experimental results, a model for peak net pressure coefficients for cladding design was proposed, considering variations in turbulence intensity and height.

Magnetic Cloud and its Interplanetary Shock Sheath as a Modulator of the Cosmic Ray Intensity (우주선 Intensity 조정자로서 자기구름과 그 주위의 행성간 충격파 sheath 영역의 역할)

  • Oh, Su-Yeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.149-156
    • /
    • 2008
  • Forbush Decreases (FDs) are representative events of abrupt decrease in galactic cosmic ray intensity. They are known to be strongly associated with solar wind events such as interplanetary shock (IP shock) and magnetic cloud (MC). In order to examine effectiveness of the MC on FDs, I studied the 44 MCs that occurred during the 2 years from 1998 to 1999 and investigated the properties of interplanetary magnetic field (IMF) and solar wind. As a result, I found that 11 out of 44 MCs are associated with the FDs. In particularly, it is noted that the FDs are driven by the IP shock sheaths which are associated with over 13 nT of IMF magnitude, 3 nT of IMF turbulence, and 550km/s of solar wind speed. This result indicates that magnetic cloud and its interplanetary shock sheath work as a modulator of the cosmic ray intensity.