• Title/Summary/Keyword: wind induced waves

Search Result 48, Processing Time 0.025 seconds

Time-Dependent Characteristics of the Nonequilibrium Condensation in Subsonic Flows

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Toshiaki Setoguchi;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1511-1521
    • /
    • 2002
  • High-speed moist air or steam flow has long been of important subject in engineering and industrial applications. Of many complicated gas dynamics problems involved in moist air flows, the most challenging task is to understand the nonequilibrium condensation phenomenon when the moist air rapidly expands through a flow device. Many theoretical and experimental studies using supersonic wind tunnels have devoted to the understanding of the nonequilibrium condensation flow physics so far. However, the nonequilibrium condensation can be also generated in the subsonic flows induced by the unsteady expansion waves in shock tube. The major flow physics of the nonequilibrium condensation in this application may be different from those obtained in the supersonic wind tunnels. In the current study, the nonequilibrium condensation phenomenon caused by the unsteady expansion waves in a shock tube is analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which are fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme is applied to solve the governing equation systems. The computational results are compared with the previous experimental data. The time-dependent behavior of nonequilibrium condensation of moist air in shock tube is investigated in details. The results show that the major characteristics of the nonequilibrium condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.

A study of internal wave influence on OTEC systems

  • Shi, Shan;Kurup, Nishu V.;Halkyard, John;Jiang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.309-325
    • /
    • 2013
  • Ocean Thermal Energy Conversion (OTEC) systems utilize the temperature difference between the surface water and deep ocean water to generate electrical energy. In addition to ocean surface waves, wind and current, in certain locations like the Andaman Sea, Sulu Sea and the South China Sea the presence of strong internal waves may become a concern in floating OTEC system design. The current paper focuses on studying the dependence of the CWP hydrodynamic drag on relative velocity of the flow around the pipe, the effect of drag amplification due to vortex induced vibrations and the influence of internal waves on the floating semi and the cold water pipe integrated OTEC system. Two CWP sizes are modeled; the 4m diameter pipe represents a small scale prototype and the 10m diameter pipe represents a full commercial size CWP. are considered in the study.

Determination of Design Parameters with SWAN Model at Southwest Coast (SWAN모형을 이용한 남서 도서해역에서의 설계 파라메타 추출)

  • Kim, Kang-Min;Kang, Suk-Hyung;Lee, Joong-Woo;Lee, Hoon;Kwon, So-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.253-260
    • /
    • 2005
  • Recently, the storms which hit Korean Peninsula are getting bigger, and the damages from the storms are wide spreaded. Thus, and approach with disaster prebention to offshore area and/or opened island area is neccessary. The existing wave design parameter was calculated with linear regular wave models inputting deep water design wave or wind sources. so it wasn't able to deal with wind-induced waves, interactions with waves, and redistribution of wave energy simultaneously. In this study, we made numerical simulation with SWAN(Simulation Waves Nearshore) Model which can consider development of waves and winds and their interference. The result from this model shows much different with those from existing model's. so the result from this study, especially in this modeling area, could be used for harbor design and coastal disaster prevention field in the future.

  • PDF

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation

  • Nguyen, Cong-Uy;Lee, So-Young;Huynh, Thanh-Canh;Kim, Heon-Tae;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2019
  • In this study, vibration characteristics of offshore wind turbine tower (WTT) with gravity-based foundation (GBF) are identified from dynamic responses under wave-induced excitations. The following approaches are implemented to achieve the objective. Firstly, the operational modal analysis methods such as frequency domain decomposition (FDD) and stochastic subspace identification (SSI) are selected to estimate modal parameters from output-only dynamic responses. Secondly, a GBF WTT model composed of superstructure, substructure and foundation is simulated as a case study by using a structural analysis program, MIDAS FEA. Thirdly, wave pressures acting on the WTT structure are established by nonlinear regular waves which are simulated from a computational fluid software, Flow 3D. Wave-induced acceleration responses of the target structure are analyzed by applying the simulated wave pressures to the GBF WTT model. Finally, modal parameters such as natural frequencies and mode shapes are estimated from the output-only acceleration responses and compared with the results from free vibration analysis. The effect of wave height and period on modal parameter extraction is also investigated for the mode identification of the GBF WTT.

Analysis of the Wave Induced Downtimes in Pohang New Harbor (포항신항내 파랑에 의한 Downtime 분석)

  • 정원무;오세범;채장원;김상익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.24-34
    • /
    • 1997
  • To find the causes of the downtime problems in Pohang New Harbor, extensive field measurements of short- and long-period waves for 1.5 months and their analyses were made taking into account of wind and downtime records. Measured wave height ratios inside the harbor are appeared to be slightly larger than predicted ones using numerical methods in the previous studies. It is shown that the major causes of the downtime are the wind wave (or swell) higher than loading criteria and also swell with even smaller wave height but longer period(more than 10 sec). Waves of long-period components[0(min)] were recorded as 20 cm high in case of dominant seiche phenomena but they might not be related with the downtime problems.

  • PDF

A Study on Harmonic Resonance in a DFIG Wind Turbine-generator Connected to a Distribution Power Line (DFIG 풍력발전기가 연계된 배전선로의 고조파 공진 특성에 관한 연구)

  • Choi, Hyung-Joo;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1383-1389
    • /
    • 2013
  • There were telecommunication noise and malfunctions of the electronic devices occurred over a wide area due to the high harmonic voltage and/or current levels of the Back-to-back converter in the DFIG wind power system even though the magnitude of all harmonics is within the international standards. The triangular carrier signals of the PWM used in the power converter system is related to the telecommunication noise because they are in the range of audible frequencies and amplified by a variety of the standing waves that were excited by harmonic voltage sources in the weak grid system such as a long distance distribution transmission lines. This paper describes the characteristics of the harmonics in the wind turbine-generator, numerical analysis and simulation of the harmonics resonance phenomena in the distribution lines as well as measuring induced voltage of the telecommunication lines in parallel with power lines in order to verify the root cause of the telecommunication noise. These noise problems can occur in a wind turbine power system with a non-linear converter at any time, as well as photovoltaic power system. So, the preliminary review of suitable filter devices and switching frequencies of the PWM have to be required by considering the stability of the controller at the design stage but as part of the measures the effect of the telecommunication cable shields was analyzed by comparing the measured data between multi-conductor with/without shields so as to attenuate the sources of the harmonics voltage induced into the telecommunication lines and to apply the most cost-effective measures in the field.

Experimental investigation on a freestanding bridge tower under wind and wave loads

  • Bai, Xiaodong;Guo, Anxin;Liu, Hao;Chen, Wenli;Liu, Gao;Liu, Tianchen;Chen, Shangyou;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.951-968
    • /
    • 2016
  • Long-span cross-strait bridges extending into deep-sea waters are exposed to complex marine environments. During the construction stage, the flexible freestanding bridge towers are more vulnerable to environmental loads imposed by wind and wave loads. This paper presents an experimental investigation on the dynamic responses of a 389-m-high freestanding bridge tower model in a test facility with a wind tunnel and a wave flume. An elastic bridge model with a geometric scale of 1:150 was designed based on Froude similarity and was tested under wind-only, wave-only and wind-wave combined conditions. The dynamic responses obtained from the tests indicate that large deformation under resonant sea states could be a structural challenge. The dominant role of the wind loads and the wave loads change according to the sea states. The joint wind and wave loads have complex effects on the dynamic responses of the structure, depending on the approaching direction angle and the fluid-induced vibration mechanisms of the waves and wind.

Safety assessment of caisson transport on a floating dock by frequency- and time-domain calculations

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • When caissons are mounted on a floating transportation barge and towed by a tug boat in waves, motion of the floating dock creates inertia and gravity-induced slip forces on the caisson. If its magnitude exceeds the corresponding friction force between the two surfaces, a slip may occur, which can lead to an unwanted accident. In oblique waves, both pitch and roll motions occur simultaneously and their coupling effects for slip and friction forces become more complicated. With the presence of strong winds, the slip force can appreciably be increased to make the situation worse. In this regard, the safety of the transportation process of a caisson mounted on a floating dock for various wind-wave conditions is investigated. The analysis is done by both frequency-domain approach and time-domain approach, and their differences as well as pros and cons are discussed. It is seen that the time-domain approach is more direct and accurate and can include nonlinear contributions as well as viscous effects, which are typically neglected in the linear frequency-domain approach.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.