• Title/Summary/Keyword: wind induced waves

Search Result 47, Processing Time 0.026 seconds

Fast Simulation of Wind Waves along the Korean Coast Induced by Typhoon Nabi, 2005 (태풍 나비에 의한 한국 연안 태풍파의 신속 모의)

  • Lee, Jung-Lyul;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.567-573
    • /
    • 2006
  • An efficient typhoon wave-generating model is applied to northeast Asia sea zone presented that can be used by civil defense agencies for real-time prediction and fast warnings on typhoon-generated wind wave and storm surge. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. The results simulated along the Korean coasts during Typhoon Nabi (2005) showed reasonable agreement with the recorded wind waves.

  • PDF

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

Experimental studies of impact pressure on a vertical cylinder subjected to depth induced wave breaking

  • Vipin, Chakkurunnipalliyalil;Panneer Selvam, Rajamanickam;Sannasiraj Annamalaisamy, Sannasiraj
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.439-459
    • /
    • 2022
  • This paper describes experimental studies of impact pressure generated by breaking regular waves in shallow water on a vertical cylinder. Experimental work was carried out in a shallow water flume using a 1:30 - scale model of a vertical rigid circular hollow cylinder with a diameter 0.2 m. This represents a monopile for shallow water offshore wind turbines, subjected to depth induced breaking regular waves of frequencies of 0.8 Hz. The experimental setup included a 1 in 10 sloping bed followed by horizontal bed with a constant 0.8 m water depth. To determine the breaking characteristics, plunging breaking waves were generated. Free surface elevations were recorded at different locations between the wave paddle to the cylinder. Wave impact pressures on the cylinder at a number of elevations along its height were measured under breaking regular waves. The depth-induced wave breaking characteristics, impact pressures, and wave run-up during impact for various cylinder locations are presented and discussed.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

Aerodynamic response of articulated towers: state-of-the-art

  • Zaheer, M. Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.97-120
    • /
    • 2008
  • Wind and wave loadings have a predominant role in the design of offshore structures in general, and articulated tower in particular for a successful service and survival during normal and extreme environmental conditions. Such towers are very sensitive to the dynamic effects of wind and wind generated waves. The exposed superstructure is subjected to aerodynamic loads while the submerged substructure is subjected to hydrodynamic loads. Articulated towers are designed such that their fundamental frequency is well below the wave frequency to avoid dynamic amplification. Dynamic interaction of these towers with environmental loads (wind, waves and currents) acts to impart a lesser overall shear and overturning moment due to compliance to such forces. This compliancy introduces geometric nonlinearity due to large displacements, which becomes an important consideration in the analysis of articulated towers. Prediction of the nonlinear behaviour of these towers in the harsh ocean environment is difficult. However, simplified realistic mathematical models are employed to gain an important insight into the problem and to explore the dynamic behaviour. In this paper, various modeling approaches and solution methods for articulated towers adopted by past researchers are reviewed. Besides, reliability of articulation system, the paper also discussed the design, installation and performance of articulated towers around the world oceans.

Wave Analysis Method for Offshore Wind Power Design Suitable for Suitable for Ulsan Area

  • Woobeom Han;Kanghee Lee;Seungjae Lee
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.2-16
    • /
    • 2024
  • Various loads induced by marine environmental conditions, such as waves, currents, and wind, are crucial for the operation and viability of offshore wind power (OWP) systems. In particular, waves have a significant impact on the stress and fatigue load of offshore structures, and highly reliable design parameters should be derived through extreme value analysis (EVA) techniques. In this study, extreme wave analyses were conducted with various Weibull distribution models to determine the reliable design parameters of an OWP system suitable for the Ulsan area. Forty-three years of long-term hindcast data generated by a numerical wave model were adopted as the analyses data, and the least-squares method was used to estimate the parameters of the distribution function for EVA. The inverse first-order reliability method was employed as the EVA technique. The obtained results were compared among themselves under the assumption that the marginal probability distributions were 2p, 3p, and exponentiated Weibull distributions.

Evolution of Wind Storm over Coastal Complex Terrain (연안복합지형에서 바람폭풍의 진화)

  • Choi, Hyo;Seo, Jang-Won;Nam, Jae-Cheol
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Tornado-Induced Extreme Waves in an Offshore Basin Revisited (토네이도가 유발한 막대한 파에 대한 재고)

  • Yong Kwon Chung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.120-124
    • /
    • 1998
  • The present study was initiated to protect floating nuclear power plants from the tornado. The solution shows that a tonado induces extreme waves of 27 ft (8.2 m) in height if it crosses the basin with a speed close to the critical speed. Waves generated by wind stress are ignored.

  • PDF

Time-Dependent Characteristics of the Nonequilibrium Condensation in Subsonic Flows

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Toshiaki Setoguchi;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1511-1521
    • /
    • 2002
  • High-speed moist air or steam flow has long been of important subject in engineering and industrial applications. Of many complicated gas dynamics problems involved in moist air flows, the most challenging task is to understand the nonequilibrium condensation phenomenon when the moist air rapidly expands through a flow device. Many theoretical and experimental studies using supersonic wind tunnels have devoted to the understanding of the nonequilibrium condensation flow physics so far. However, the nonequilibrium condensation can be also generated in the subsonic flows induced by the unsteady expansion waves in shock tube. The major flow physics of the nonequilibrium condensation in this application may be different from those obtained in the supersonic wind tunnels. In the current study, the nonequilibrium condensation phenomenon caused by the unsteady expansion waves in a shock tube is analyzed by using the two-dimensional, unsteady, Navier-Stokes equations, which are fully coupled with a droplet growth equation. The third-order TVD MUSCL scheme is applied to solve the governing equation systems. The computational results are compared with the previous experimental data. The time-dependent behavior of nonequilibrium condensation of moist air in shock tube is investigated in details. The results show that the major characteristics of the nonequilibrium condensation phenomenon in shock tube are very different from those in the supersonic wind tunnels.