• 제목/요약/키워드: wind generation farm

검색결과 111건 처리시간 0.032초

Long Term Variation Trend of Wind and its Impact Upon Wind Power Generation in Taiwan

  • Na, Wang;Quan, Wan;Sheng, Su
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.782-788
    • /
    • 2014
  • Wind power generation has been viewed as a promising renewable energy to meet challenge of climate change. However, wind power is susceptible to climate change because previous investigation shows there are declining trends of the land surface wind speeds over middle and lower latitudes. Since long term variation trends is notably different from inter-annual random variation and could have notable impact on wind farm from planning perspective, observed meteorological data of Taiwan is investigated to find out long term variation trends of wind speed and its impact on wind power generation. It is discovered that wind speed in majority of stations in west coast of Taiwan have ascending trends while that of all investigated stations in east coast have descending trends. Since east of Taiwan is not suitable for wind power development for its higher likelihood suffering Typhoons and most of established wind farm locate in west coast of Taiwan, it is speculated that long term variation trend of wind do not have notable negative impact on wind power generation in Taiwan.

풍력 발전단지의 출력 지령값을 고려한 계통 연계 운영 방안 (A New Control Scheme of Wind Farm Considering P,Q References)

  • 최정현;박진우;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1172-1173
    • /
    • 2008
  • At the moment, the control ability of wind farms is a prime research concern for the grid integration of large wind farms, due to their required active role in the power system. As more wind turbines are installed, the power from wind energy will start to replace conventional generation units and its influence on power systems cannot be neglected. Besides, because of the intermittent nature of wind the output power of wind turbines fluctuates according to wind speed variation. Especially an isolated power system with small capacity such like Jeju needs more systematic solutions and regulations(grid code). This paper presents the idea of approach for centralized operating wind farm strategy to regulate the wind farm power production to the reference power ordered by the system operator. The doubly fed induction generator(DFIG) can control active and reactive power in feasible range. So wind farm comprised of DFIG has the possibility of a controllable component in the power system. The presented wind farm control has a hierarchical structure with both a wind farm control level and a wind turbine control level.

  • PDF

지형에 따른 발전기 배치가 풍력 발전 성능에 미치는 영향에 관한 수치해석 연구 (A Numerical Study on the Effect of Mountainous Terrain and Turbine Arrangement on the Performance of Wind Power Generation)

  • 이명성;이승호;허남건
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.901-906
    • /
    • 2010
  • 복잡한 지형에 위치한 풍력발전소의 유동장을 분석하기 위해 3차원 유동해석이 수행되었다. 본 논문의 목적은 복잡한 지형과 풍력발전기의 배치가 풍력발전소의 성능에 미치는 영향을 연구하는 것이다. 자세한 블레이드 형상을 고려한 총 49대의 풍력발전기가 계산 도메인에 포함되었다. 풍력발전기의 회전운동을 고려하기 위해 고정회전자 기법이 사용되었고, 블레이드에 작용하는 토크를 계산함으로써 풍력발전기의 성능을 평가하였다. 수치해석 결과를 통하여 풍력발전소 전체의 자세한 유동장과 지형적 영향으로 풍속이 감소되는 국부적인 영역을 예측하였고, 상류의 발전기에서 발생하는 후류가 하류에 위치한 발전기의 성능에 미치는 영향도 분석되었다. 본 연구의 해석기법은 추후 건설되는 풍력발전소의 부지와 풍력발전기의 최적 위치를 선정하는 데 사용될 수 있을 것으로 사료된다.

국내 해상풍력발전단지 낙뢰피해 영향 분석에 관한 연구 (A Study on the Analysis of Lightning Damage Impact in Domestic Offshore Wind Farm)

  • 서진규;김규호
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.247-252
    • /
    • 2016
  • The latest offshore wind turbines are easily exposed to lightning strikes because they are designed with longer blades and taller height to satisfy the growing capacity demands. The generation facilities and elements of the offshore wind farm are more vulnerable to lightning damage because of more severe, unpredictable weather conditions. Therefore, this paper presents the analysis of measure for lightning overvoltage mitigation in offshore wind farm planned in South Korea southwest seashore. The sensitivity analysis includes the steady state and transient state characteristics of offshore wind farm and proposes the countermeasure for mitigation of transient overvoltage by considering earth resistivity of the offshore environment.

국내 해상풍력 발전단지 입지 분석 연구 (Study of the Spatial Location Analysis for Domestic Offshore Wind Farm)

  • 김동휘;이용준;류인호;서대림
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.504-511
    • /
    • 2010
  • After facing the fact such as fossil-fuel depletion, global warming, the Kyoto Protocol coming into force of mandatory reductions of carbon dioxide, the world is actively promoting the spread of the solar, wind, tidal, geothermal and other clean renewable energy technology development. Among them, wind power is the only alternative energy to secure a comparable price competition with fossil fuels because cheaper price power generation than other renewable energy when creating large-scale wind farm, thus wind power is the fastest growing industries in the world in the renewable energy field. Especially the offshore wind power is showing rapid growth as most of the wind power sector because of less changes of wind speed, no restrictions of land use, and large-scale development of offshore wind power. In this paper, the field of site selection and spatial location analysis techniques for development of large-scale offshore wind farm are discussed primarily. This paper shows overview of offshore wind power and establishment procedure for development of offshore wind farm.

  • PDF

제주계통 풍력발전단지의 무효전력 특성 분석 (Analysis of Reactive Power Characteristic for Wind Farms in Jeju System)

  • 최영도;박영신;전동훈;윤기갑;박상호
    • 신재생에너지
    • /
    • 제6권2호
    • /
    • pp.19-26
    • /
    • 2010
  • Experiences in wind farm operation are very limited in Korea, and the foundation for setting standards in power system connection is weak. Therefore, connection and operation standards for wind farms in other countries must be reviewed and power system operation criteria need to be established in order to set up connection standards and optimal operation plans according to the Jeju power system. In this study, reactive power control characteristics of a wind farm were analyzed using a wind farm model of the Jeju power system to propose power system connection operation standards for wind generation within the Jeju power system. Also, change in characteristics of the power system for the application of each reactive power control standard was confirmed, and the results were verified through trial tests arm was analyzed.

풍력발전단지가 연계된 전력계통에서 상정고장을 고려한 발전력 재조정에 관한 연구 (A Study on the Rescheduling of Generation Considering Contingency in Power System with Wind Farms)

  • 최수현;김규호
    • 전기학회논문지
    • /
    • 제66권2호
    • /
    • pp.255-260
    • /
    • 2017
  • This paper studies on effective rescheduling of generation when the single line contingency has occurred in power system with wind farm. The suggested method is formulated to minimize the rescheduling cost of conventional and wind generators to alleviate congestion. The generator rescheduling method has been used with incorporation of wind farms in the power system. Since all sensitivity is different about congestion line, Line Outage Distribution Factor(LODF) and Generator Sensitivity Factor(GSF) is used to alleviate congestion. The formulation have been proccessed using linear programming(LP) optimization techniques to alleviate transmission congestion. The effectiveness of the proposed rescheduling of generation method has been analyzed on revised IEEE 30-bus systems.

공간모델링 기반의 풍력발전출력 예측 모델에 관한 연구 (Study on Wind Power Prediction model based on Spatial Modeling)

  • 정솔영;허진;최영도
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.163-168
    • /
    • 2015
  • In order to integrate high wind generation resources into power grid, it is an essential to predict power outputs of wind generating resources. As wind farm outputs depend on natural wind resources that vary over space and time, spatial modeling based on geographic information such as latitude and longitude is needed to estimate power outputs of wind generation resources. In this paper, we introduce the basic concept of spatial modeling and present the spatial prediction model based on Kriging techniques. The empirical data, wind farm power output in Texas, is considered to verify the proposed prediction model.

제주 행원 풍력발전단지의 출력 안정화를 위한 에너지저장시스템 용량산정에 관한 연구 (A Study on the Determining ESS Capacity for Stabilizing Power Output of Haeng-won Wind Farm in Jeju)

  • 강명석;진경민;김일환;오성보;이정민
    • 한국태양에너지학회 논문집
    • /
    • 제32권1호
    • /
    • pp.25-31
    • /
    • 2012
  • This paper presents the characteristics of power generation output at Haeng-won wind farm and how to determine the optimized ESS capacity for power stabilizing. Depend on the fluctuation rate of wind power output variation, wind farm capacity and site, power stabilization will be impacted. Therefore, we need to determine proper ESS capacity. Using the actual data of Haeng-won wind farm from 2009. 3 to 2010.2., capacity of ESS was determined by moving average value. To verify the proposed algorithm, simulations are carried out with PSCAD/EMTDC program. As a result, optimal ESS capacity of Haeng-won wind farm in Jeju is estimated about 1.63 MWh.

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.