• 제목/요약/키워드: wind forces

검색결과 640건 처리시간 0.021초

풍력발전기용 3점 지지 드라이브 트레인의 지지 강성이 기어박스 입력하중에 미치는 영향 (The Influence of Suspension Stiffness on the Gearbox Input Loads in a 3-Point Suspension Wind Turbine Drive Train)

  • 남주석;남용윤
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.514-520
    • /
    • 2015
  • The effects of suspension stiffness on the reaction load of the gearbox suspension for a three-point suspension wind turbine drive train were investigated by finite element analysis. The reaction forces of the gearbox suspension appear to increase as the gearbox suspension stiffness increases; however, the main bearing stiffness has a reverse effect on the reaction forces. The influence of the gearbox suspension stiffness is greater than that of the main bearing. Since the suspensions must provide the gearbox with proper support, it is not practical to use soft gearbox suspension for small reaction forces. It is more feasible to use stiff main bearings. As a guideline for the main bearing stiffness in the present study, we propose a relative stiffness of 100-150% of the reference.

Aeroelastic forces on yawed circular cylinders: quasi-steady modeling and aerodynamic instability

  • Carassale, Luigi;Freda, Andrea;Piccardo, Giuseppe
    • Wind and Structures
    • /
    • 제8권5호
    • /
    • pp.373-388
    • /
    • 2005
  • Quasi-steady approaches have been often adopted to model wind forces on moving cylinders in cross-flow and to study instability conditions of rigid cylinders supported by visco-elastic devices. Recently, much attention has been devoted to the experimental study of inclined and/or yawed circular cylinders detecting dynamical phenomena such as galloping-like instability, but, at the present state-of-the-art, no mathematical model is able to recognize or predict satisfactorily this behaviour. The present paper presents a generalization of the quasi-steady approach for the definition of the flow-induced forces on yawed and inclined circular cylinders. The proposed model is able to replicate experimental behaviour and to predict the galloping instability observed during a series of recent wind-tunnel tests.

Estimation of excitation and reaction forces for offshore structures by neural networks

  • Elshafey, Ahmed A.;Haddara, M.R.;Marzouk, H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.1-15
    • /
    • 2011
  • Offshore structures are subjected to wind loads, wind generated wave excitations, and current forces. In this paper we focus on the wind generated wave excitations as the main source for the external forces on the structure. The main objective of the paper is to provide a tool for using deck acceleration measurements to predict the value of the force and moment acting on the offshore structure foundation. A change in these values can be used as an indicator of the health of the foundation. Two methods of analysis are used to determine the relationship between the force and moment acting on the foundation and deck acceleration. The first approach uses neural networks while the other uses a Fokker-Planck formulation. The Fokker-Plank approach was used to relate the variance of the excitation to the variance of the deck acceleration. The total virtual mass of the equivalent SDOF of the structure was also determined at different deck masses.

Study of Flow Field and Pressure Distribution on a Rotor Blade of HAWT in Yawed Flow Conditions

  • Maeda, Takao;Kamada, Yasunari;Okada, Naohiro;Suzuki, Jun
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.360-368
    • /
    • 2010
  • This paper describes the flow field and the blade pressure distribution of a horizontal axis wind turbine in various yawed flow conditions. These measurements were carried out with 2.4m-diameter rotor with pressure sensors and a 2-dimensional laser Doppler velocimeter for each azimuth angle in a wind tunnel. The results show that aerodynamic forces of the blade based on the pressure measurements change according to the local angle of attack during rotation. Therefore the wake of the yawed rotor becomes asymmetric for the rotor axis. Furthermore, the relations between aerodynamic forces and azimuth angles change according to tip speed ratio. By the experimental analysis, the flow field and the aerodynamic forces for each azimuth angle in yawed flow condition were clarified.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Galloping analysis of roof structures

  • Zhang, Xiangting;Zhang, Ray Ruichong
    • Wind and Structures
    • /
    • 제6권2호
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural roofs with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficient in traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind force representation on each and every different orientation roof, facilitating the galloping analysis of multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are considered. An energy-based equivalent technique, together with the modal analysis, is used to solve the nonlinear MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, which is then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of various experimental results obtained in pertinent research, this study also shows that consideration of nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed, thus enhancing aerodynamic stability of structures.

풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석 (The Effect of Wind Load on the Stability of a Container Crane)

  • 이성욱;심재준;한동섭;박종서;한근조;이권순;김태형
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

풍하중 설계 기준에 따른 컨테이너 크레인의 안정성 비교 (The Comparison of the Stability of a Container Crane according to various Wind Load Design Codes)

  • 이성욱;심재준;한동섭;한근조;김태형
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.561-566
    • /
    • 2005
  • 본 연구에서는 풍하중 설계 기준에 따른 50톤급 컨테이너 크레인의 안정성을 비교${\cdot}$분석하였다. '항만시설장비기준 /크레인강 구조부분 설계 기준(KS A 1627)'과 건설교통부의 '건축물하중기준'에 의거한 풍하중이 산정되었으며, 이리한 풍하중이 컨테이너 크레인에 작용할때, 컨테이너 크레인의 각 지지점에서 발생돠는 반력을 분석함으로써 구조적 안정성을 비교${\cdot}$평가하였다. 연구결과. 컨테이너 크레인의 설계 풍하중 산정 시 설계풍속의 명확한 정의가 필요하고, 컨테이너 크레인의 구조 안정성 분석을 위하여 인장력 평가와 지반 안정성을 고려하기 위한 최대 압축력 검토의 필요성을 확인하였다.

Investigation on spanwise coherence of buffeting forces acting on bridges with bluff body decks

  • Zhou, Qi;Zhu, Ledong;Zhao, Chuangliang;Ren, Pengjie
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.181-198
    • /
    • 2020
  • In the traditional buffeting response analysis method, the spanwise incomplete correlation of buffeting forces is always assumed to be same as that of the incident wind turbulence and the action of the signature turbulence is ignored. In this paper, three typical bridge decks usually adopted in the real bridge engineering, a single flat box deck, a central slotted box deck and a two-separated paralleled box deck, were employed as the investigated objects. The wind induced pressure on these bridge decks were measured via a series of wind tunnel pressure tests of the sectional models. The influences of the wind speed in the tests, the angle of attack, the turbulence intensity and the characteristic distance were taken into account and discussed. The spanwise root coherence of buffeting forces was also compared with that of the incidence turbulence. The signature turbulence effect on the spanwise root coherence function was decomposed and explained by a new empirical method with a double-variable model. Finally, the formula of a sum of rational fractions that accounted for the signature turbulence effect was proposed in order to fit the results of the spanwise root coherence function. The results show that, the spanwise root coherence of the drag force agrees with that of incidence turbulence in some range of the reduced frequency but disagree in the mostly reduced frequency. The spanwise root coherence of the lift force and the torsional moment is much larger than that of the incidence turbulence. The influences of the wind speed and the angle of attack are slight, and they can be ignored in the wind tunnel test. The spanwise coherence function often involves several narrow peaks due to the signature turbulence effect in the high reduced frequency zone. The spanwise coherence function is related to the spanwise separation distance and the spanwise integral length scales, and the signature turbulence effect is related to the deck-width-related reduced frequency.

Reliability of structures with tuned mass dampers under wind-induced motion: a serviceability consideration

  • Pozos-Estrada, A.;Hong, H.P.;Galsworthy, J.K.
    • Wind and Structures
    • /
    • 제14권2호
    • /
    • pp.113-131
    • /
    • 2011
  • Excessive wind-induced motion in tall buildings can cause discomfort, affect health, and disrupt the daily activities of the occupants of a building. Dynamic vibration absorbers such as the tuned mass dampers (TMDs) can be used to reduce the wind-induced motion below a specified tolerable serviceability limit state (SLS) criterion. This study investigates whether the same probability of not exceeding specified wind-induced motion levels can be achieved by torsionally sensitive structures without/with linear/nonlinear TMDs subjected to partially correlated wind forces, if they are designed to just meet the same SLS criterion. For the analyses, different structures and the uncertainty in the response, wind load and perception of motion is considered. Numerical results indicate that for structures that are designed or retrofitted without or with optimum linear TMDs and satisfying the same SLS criterion, their probability of exceeding the considered criterion is very consistent, if the inherent correlation between the wind forces is considered in design. However, this consistency deteriorates if nonlinear TMDs are employed. Furthermore, if the correlation is ignored in the design, in many cases a slightly unconservative design, as compared to the designed by considering correlation, is achieved.