• 제목/요약/키워드: wind field simulation

검색결과 371건 처리시간 0.022초

CFD를 이용한 OSRVM 주변의 공력소음 해석과정 개발 및 검증 (Development of Wind Noise Analysis Procedure and Its Verification Using CFD Tool around an OSRVM)

  • 박현호;한현욱;김문상;하종백;김용년
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.92-102
    • /
    • 2012
  • The process of the wind noise analysis around an OSRVM is developed and is verified by simulating unsteady flow field past a generic OSRVM mounted on the flat plate at the Reynolds number of $Re_D=5.2{\times}10^5$ based on the mirror diameter. The transient flow field past a generic OSRVM is simulated with various turbulence models, namely DES-SA, LES Constant SGS, and LES Dynamic SGS. The sound radiation is predicted using the Ffowcs- Williams and Hawkings analogy. For the present simulation, the 6.35million cells are generated. Time averaged pressure coefficients at 34 locations on the surface of the generic OSRVM are compared with the available experimental data. Also, 12 Sound Pressure Levels located on the surrounding mirror are compared with the available experimental data. Both of them show good agreements with experimental data.

한국 동남해역에서의 유출유 확산예측모델 (Oil Spill Behavior forecasting Model in South-eastern Coastal Area Of Korea)

  • 류청로;김종규;설동관;강동욱
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제1권2호
    • /
    • pp.52-59
    • /
    • 1998
  • 연안해역의 유류오염물질의 거동을 신속히 이해하기 위해 구축된 긴급방제 현장용 유출유 확산모델을 실해역인 한국 동남해역(부산-울산주변 해역)을 대상으로 기존의 유류오염사고 자료와 계산에 의한 유류확산예측 결과의 비교를 통하여 그 적용성을 검증하였다. 특히 유적의 제적을 추적함으로서 조류, 취송류 그리고 해류에 의한 유출유 확산특성을 파악하였다. 유출유 확산예측결과는 실제 유출유의 확산경로와 비슷한 결과로 나타났으며, 본 연구의 대상해역과 같이 조류의 영향이 미약한 해역에서는 바람에 의한 취송류성분이나 해류성분이 유출유 확산에 매우 중요한 메카니즘임을 알 수 있다.

  • PDF

개선(改善)된 Monte-Carlo 시뮬레이션 방법(方法)에 의한 한국(韓國)의 태풍위험도(颱風危險度) 분석(分析) (An Improved Monte-Carlo Simulation Method for Typhoon Risk Assessment in Korea)

  • 조효남;장동일;차철준
    • 대한토목학회논문집
    • /
    • 제7권4호
    • /
    • pp.159-165
    • /
    • 1987
  • 본(本) 연구(硏究)에서는 특정지역에서 태풍(颱風)의 통계적(統計的) 분석(分析) 및 확률적(確率的) 기술방법(記述方法)을 이용하여 한국(韓國)의 태풍위험도분석(颱風危險度分析)에 관한 합리적(合理的) 방법(方法)을 제시(提示)하였다. 간접적(間接的) 방법(方法)으로 태풍(颱風)의 확률풍속(確率風速)을 예측하기 위해 두가지 시뮬레이션 과정(過程) 및 fitting 방법(方法)에 대해 논(論)하였다. 일반적으로 간접적(間接的) 방법(方法)으로는 Russell의 방법(方法)이 사용되고 있는데 이 방법(方法)은 특정지역에서 태풍(颱風)의 확률적(確率的) 예측을 위한 기상학적(氣象學的) 특성(特性)과 풍속장(風速場)모형(Wind field Model)에 기초를 두고 시뮬레이션 방법(方法)에 의해 약 1,000개의 태풍(颱風)을 발생시켜 통계적(統計的)으로 기저확률분포(基底確率分布)를 구한 다음, 그 결과를 Weibull분포(分布)에 fitting하도록 하고 있다. 그러나, 본(本) 연구(硏究)에서는 150년(年) 내지 200년간(年間)의 연최대풍속(年最大風速)을 발생시켜 그 data를 이용하여 Weibull분포(分布)에 직접 fitting하는 방법(方法)을 제안(提案)하였다. 수치해석(數値解析)결과, 본(本) 연구(硏究)에서 제안(提案)한 방법(方法)이 보다 효율적(效率的)이고 합리적(合理的)인 태풍(颱風)의 위험도평가방법(危險度評價方法)임을 알 수 있었다. 아울러, 제안(提案)된 확률풍속(確率風速) 예측방법(豫測方法)을 이용하여 태풍(颱風)취약지역인 남서해안(海岸) 일대에서 송전탑(送電塔)의 설계풍속(設計風速)에 대해 검토, 분석하였다.

  • PDF

Automatic real-time system of the global 3-D MHD model: Description and initial tests

  • Park, Geun-Seok;Choi, Seong-Hwan;Cho, Il-Hyun;Baek, Ji-Hye;Park, Kyung-Sun;Cho, Kyung-Suk;Choe, Gwang-Son
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • The Solar and Space Weather Research Group (SOS) in Korea Astronomy and Space Science Institute (KASI) is constructing the Space Weather Prediction Center since 2007. As a part of the project, we are developing automatic real-time system of the global 3-D magnetohydrodynamics (MHD) simulation. The MHD simulation model of earth's magnetosphere is designed as modified leap-frog scheme by T. Ogino, and it was parallelized by using message passing interface (MPI). Our work focuses on the automatic processing about simulation of 3-D MHD model and visualization of the simulation results. We used PC cluster to compute, and virtual reality modeling language (VRML) file format to visualize the MHD simulation. The system can show the variation of earth's magnetosphere by the solar wind in quasi real time. For data assimilation we used four parameters from ACE data; density, pressure, velocity of solar wind, and z component of interplanetary magnetic field (IMF). In this paper, we performed some initial tests and made a animation. The automatic real-time system will be valuable tool to understand the configuration of the solar-terrestrial environment for space weather research.

  • PDF

DSMC 방법을 이용한 평판 주위의 희박류 해석 (Analysis of Rarefied Flow Field Around a Flat Plate by the DSMC Method)

  • 윤성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.235-240
    • /
    • 1995
  • The paper describes hypersonic rarefied flow of helium and nitrogen over a flat plate by the direct simulation Monte Carlo (DSMC) method. The effect of incomplete accommodation and plate thickness are analyzed and the computational results are compared with wind tunnel test data. Also computational aspects of the method are outlined.

  • PDF

Research on aerodynamic force and structural response of SLCT under wind-rain two-way coupling environment

  • Ke, Shitang;Yu, Wenlin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제29권4호
    • /
    • pp.247-270
    • /
    • 2019
  • Wind-resistant design of existing cooling tower structures overlooks the impacts of rainfall. However, rainstorm will influence aerodynamic force on the tower surface directly. Under this circumstance, the structural response of the super-large cooling tower (SLCT) will become more complicated, and then the stability and safety of SLCT will receive significant impact. In this paper, surrounding wind fields of the world highest (210 m) cooling tower in Northwest China underthree typical wind velocities were simulated based on the wind-rain two-way coupling algorithm. Next, wind-rain coupling synchronous iteration calculations were conducted under 9 different wind speed-rainfall intensity combinations by adding the discrete phase model (DPM). On this basis, the influencing laws of different wind speed-rainfall intensity combinations on wind-driving rain, adhesive force of rain drops and rain pressure coefficients were discussed. The acting mechanisms of speed line, turbulence energy strength as well as running speed and trajectory of rain drops on structural surface in the wind-rain coupling field were disclosed. Moreover, the fitting formula of wind-rain coupling equivalent pressure coefficient of the cooling tower was proposed. A systematic contrast analysis on its 3D distribution pattern was carried out. Finally, coupling model of SLCT under different working conditions was constructed by combining the finite element method. Structural response, buckling stability and local stability of SLCT under different wind velocities and wind speed-rainfall intensity combinations were compared and analyzed. Major research conclusions can provide references to determine loads of similar SLCT accurately under extremely complicated working conditions.

Numerical calculations of aerodynamic performance for ATM train at crosswind conditions

  • Rezvani, Mohammad Ali;Mohebbi, Masoud
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.529-548
    • /
    • 2014
  • This article presents the unsteady aerodynamic performance of crosswind stability obtained numerically for the ATM train. Results of numerical investigations of airflow past a train under different yawing conditions are summarized. Variations of occurrence flow angle from parallel to normal with respect to the direction of forward train motion resulted in the development of different flow patterns. The numerical simulation addresses the ability to resolve the flow field around the train subjected to relatively large yaw angles with three-dimensional Reynolds-averaged Navier-Stokes equations (RANS). ${\kappa}-{\varepsilon}$ turbulence model solved on a multi-block structured grid using a finite volume method. The massively separated flow for the higher yaw angles on the leeward side of the train justifies the use of RANS, where the results show good agreement with verification results. A method of solution is presented that can predict all aerodynamic coefficients and the wind characteristic curve at variety of angles at different speed.

Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements

  • Aly, Aly Mousaad;Gol-Zaroudi, Hamzeh
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.99-117
    • /
    • 2020
  • This paper focuses on the processes of wind flow in atmospheric boundary layer, to produce realistic full scale pressures for design of low-rise buildings. CFD with LES turbulence closure is implemented on a scale 1:1 prototype building. A proximity study was executed computationally in CFD with LES that suggests new recommendations on the computational domain size, in front of a building model, apart from common RANS-based guidelines (e.g., COST and AIJ). Our findings suggest a location of the test building, different from existing guidelines, and the inflow boundary proximity influences pressure correlation and reproduction of peak loads. The CFD LES results are compared to corresponding pressures from open jet, full scale, wind tunnel, and the ASCE 7-10 standard for roof Component & Cladding design. The CFD LES shows its adequacy to produce peak pressures/loads on buildings, in agreement with field pressures, due to its capabilities of reproducing the spectral contents of the inflow at 1:1 scale.

Verification of Speed-up Mechanism of Pedestrian-level Winds Around Square Buildings by CFD

  • Hideyuki Tanaka;Qiang Lin;Yasuhiko Azegami;Yukio Tamura
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.301-314
    • /
    • 2022
  • Various studies have been conducted on pedestrian-level wind environments around buildings. With regard to the speed-up mechanism of pedestrian-level winds, there are references to downwash effect due to the vertical pressure gradient of boundary layer flow and venturi effect due to flow blocking by the building. Two factors contribute to increase or decrease of downwash effect: change in twodimensional / three-dimensional air flow pattern (Type 1) and change in downwash wind speed due to building size that does not accompany change in airflow pattern (Type 2). Previous studies have shown that downwash effect has a greater influence in increasing or decreasing the area of strong wind than venturi effect. However, these considerations are derived from the horizontal mean wind speed distribution at pedestrian level and are not the result of three-dimensional flow field around the building. Therefore, in this study, Computational Fluid Dynamics using Large Eddy Simulation were performed to verify the downwash phenomena that contributes to increase in wind speed at pedestrian level.