• Title/Summary/Keyword: wind field measurement

Search Result 198, Processing Time 0.026 seconds

Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass

  • Li, Jiawu;Shen, Zhengfeng;Xing, Song;Gao, Guangzhong
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.85-97
    • /
    • 2020
  • The accurate estimation of the buffeting response of a bridge pylon is related to the quality of the bridge construction. To evaluate the influence of wind field characteristics on the buffeting response of a pylon in a trumpet-shaped mountain pass, this paper deduced a multimodal coupled buffeting frequency domain calculation method for a variable-section bridge tower under the twisted wind profile condition based on quasi-steady theory. Through the long-term measurement of the wind field of the trumpet-shaped mountain pass, the wind characteristics were studied systematically. The effects of the wind characteristics, wind yaw angles, mean wind speeds, and wind profiles on the buffeting response were discussed. The results show that the mean wind characteristics are affected by the terrain and that the wind profile is severely twisted. The optimal fit distribution of the monthly and annual maximum wind speeds is the log-logistic distribution, and the generalized extreme value I distribution may underestimate the return wind speed. The design wind characteristics will overestimate the buffeting response of the pylon. The buffeting response of the pylon is obviously affected by the wind yaw angle and mean wind speed. To accurately estimate the buffeting response of the pylon in an actual construction, it is necessary to consider the twisted effect of the wind profile.

Wind characteristics at Sutong Bridge site using 8-year field measurement data

  • Xu, Zidong;Wang, Hao;Wu, Teng;Tao, Tianyou;Mao, Jianxiao
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.195-214
    • /
    • 2017
  • Full-scale wind characteristics based on the field measurements is an essential element in structural wind engineering. Statistical analysis of the wind characteristics at Sutong Cable-stayed Bridge (SCB) site is conducted in this study with the recorded long-term wind data from structural health monitoring system (SHMS) between 2008 and 2015. Both the mean and turbulent wind characteristics and power spectra are comprehensively investigated and compared with those in the current codes of practice, such as the measured wind rose diagram, monthly maximum mean wind speed, turbulence intensity, integral length scale. Measurement results based on the monitoring data show that winds surrounding the SCB site are substantially influenced by the southeast monsoon in summer and strong northern wind in winter. The measured turbulence intensity is slightly higher than the recommended values in specifications, while the measured ratio of lateral to longitudinal turbulence intensity is slightly lower. An approximately linear relationship between the measured turbulence intensities and gust factors is obtained. The mean value of the turbulence integral length scale is smaller than that of typical typhoon events. In addition, it is found that the Kaimal spectrum is suitable to be adopted as the power spectrum for longitudinal wind component at the SCB site. This contribution would provide important wind characteristic references for the wind performance evaluation of SCB and other civil infrastructures in adjacent regions.

Field measurement and numerical simulation of snow deposition on an embankment in snowdrift

  • Ma, Wenyong;Li, Feiqiang;Sun, Yuanchun;Li, Jianglong;Zhou, Xuanyi
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.453-469
    • /
    • 2021
  • Snow accumulation on the road frequently induces a big traffic problem in the cold snowy region. Accurate prediction on snow distribution is fundamental for solving drifting snow disasters on roads. The present study adopts the transient method to simulate the wind-induced snow distribution on embankment based on the mixture multiphase model and dynamic mesh technique. The simulation and field measurement are compared to confirm the applicability of the simulation. Furthermore, the process of snow accumulation is revealed. The effects of friction velocity and snow concentration on snow accumulation are analyzed to clarify its mechanism. The results show that the simulation agrees well with the field measurement in trends. Moreover, the snow accumulation on the embankment can be approximately divided into three stages with time, the snow firstly deposited on the windward side, then, accumulation occurs on the leeward side which induced by the wake vortex, finally, the snow distribution reaches an equilibrium state with the slope of approximately 7°. The friction velocity and duration have a significant influence on the snow accumulation, and the vortex scale directly affected the snow deposition range on the embankment leeward side.

Study on Shear Layer Correction of Microphone Array Measurement in the Wind Tunnel Test (풍동 조건의 마이크로폰 어레이 측정에서 전단층 보정에 관한 연구)

  • Kim, Wi-Jun;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.612-618
    • /
    • 2008
  • Microphone array beamforming method has been recognized as an important aeroacoustic research field and become a standard technique in localizing sound sources. This method also used in flight acoustic measurement, and especially, it is very useful when measure sounds inside the wind tunnel. In measuring sound which is inside the wind tunnel by traditional beamforming method, there are some errors caused by airstream. The speed and the propagation path of the sound changes as it travel through the airstream. This makes the error which the position of sound is changed a little bit to the down stream direction. In this paper, validation test has made about the correction equation for this wind effects of previous researches. And beamforming including shear layer correction was performed about a sound source in the anechoic open-jet wind tunnel.

Field measurement of damping in industrial chimneys and towers

  • Cho, K.P.;Tamura, Y.;Itoh, T.;Narikawa, M.;Uchikawa, Y.;Nishimura, I.;Ohshima, Y.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2001
  • In the design of industrial chimneys and towers, structural engineers must assume a level of the inherent damping in the structures. In order to better estimate the dynamic response of those structures, actual damping was measured from wind-induced vibration signals of chimneys and towers and its characteristics with respect to the response levels, the structural systems, and the wind direction were discussed. Damping ratio and natural frequency for three chimneys and two towers were calculated using random decrement technique.

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

Time domain buffeting analysis of long suspension bridges under skew winds

  • Liu, G.;Xu, Y.L.;Zhu, L.D.
    • Wind and Structures
    • /
    • v.7 no.6
    • /
    • pp.421-447
    • /
    • 2004
  • This paper presents a time domain approach for predicting buffeting response of long suspension bridges under skew winds. The buffeting forces on an oblique strip of the bridge deck in the mean wind direction are derived in terms of aerodynamic coefficients measured under skew winds and equivalent fluctuating wind velocities with aerodynamic impulse functions included. The time histories of equivalent fluctuating wind velocities and then buffeting forces along the bridge deck are simulated using the spectral representation method based on the Gaussian distribution assumption. The self-excited forces on an oblique strip of the bridge deck are represented by the convolution integrals involving aerodynamic impulse functions and structural motions. The aerodynamic impulse functions of self-excited forces are derived from experimentally measured flutter derivatives under skew winds using rational function approximations. The governing equation of motion of a long suspension bridge under skew winds is established using the finite element method and solved using the Newmark numerical method. The proposed time domain approach is finally applied to the Tsing Ma suspension bridge in Hong Kong. The computed buffeting responses of the bridge under skew winds during Typhoon Sam are compared with those obtained from the frequency domain approach and the field measurement. The comparisons are found satisfactory for the bridge response in the main span.

Design and Ground Test of Gust Generator for GLA Wind Tunnel Test (돌풍하중완화 풍동시험을 위한 돌풍발생장치 설계 및 지상시험)

  • Lee, Sang-Wook;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Ha, Chul-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.45-48
    • /
    • 2005
  • Tile gust generator was designed for generating the gust field in the wind tunnel test of the scaled flexible wing model for validating gust response alleviation system. The ground operation test was performed for estimating the dynamic performance of tile gust generator before installing it in the wind tunnel for gust field measurement. The ground test results showed that the gust generator has sufficient dynamic capability to simulate the sinusoidal and random motion of the gust generator wing and thus can be used in the wind tunnel test related to gust.

  • PDF

BENCHMARK TESTS FOR CFD CODES FOR THE ANALYSIS OF WIND FIELD IN THE FOREST (산림 바람장 해석을 위한 전산유체역학 코드들의 벤치마크 검증)

  • Park, T.W.;Chang, S.M.;Lee, B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.11-20
    • /
    • 2012
  • In this paper, the authors test various open codes and commercial codes based on CFD technology on the wind field around the complex terrain, which is a very important transport physics in the event of forrest fire. To study the physical mechanism inside the transition from surface fire to crown fire, the wake flow behind a parallel array of trees is studied numerically to show the flow separation in the turbulent boundary layer. Two sites near to Kunsan National University are chosen for the measurement of real wind field, and obtained data are compared with those from various computational codes such as Wind-Ninja, NIST-FDS, ANSYS-CFX, and ANSYS-FlUENT, etc. Through this research, feasibility and accuracy of the present CFD codes are investigated quantitatively, compared with the measured data with AWS.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.