• Title/Summary/Keyword: wind field measurement

Search Result 198, Processing Time 0.021 seconds

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu;Lunhai Zhi;Zhixiang Hu;Bo Chen
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.61-73
    • /
    • 2023
  • In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

Measurement and Analysis of Indoor Environment in Emergency Switching Type Temporary Negative Pressure Isolation Ward that Use Portable Negative Pressure Units (이동형 음압기를 적용한 긴급 전환형 임시음압격리병실의 실내 환경 측정 분석)

  • Lee, Wonseok;Lee, Sejin;Kim, Heegang;Yeo, Myoungsouk
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.4
    • /
    • pp.89-97
    • /
    • 2022
  • Purpose: Because of the recent COVID-19 pandemic, there have been many cases of using portable negative pressure unit to convert general wards into temporary negative pressure isolation wards. The purpose of this study is to analyze the indoor environment of the switching type wards. Methods: Field measurements and experiments were conducted in a medical facility. Air volume, wind speed and pressure difference were measured in non-occupant state. Dispersion tests were performed with gas and particle matter. Results: The pressure difference between the wards and the corridor was higher than -2.5 Pa in normal situation. However, in the gas and particle dispersion tests, it was found that there were concerns about the spread through leakages in low-airtight walls or ceilings. In addition, it was confirmed that the pressure imbalance in ducts through the non-sealed diffusers could cause back flow during portable unit operation. Furthermore, when there was a pressure difference between adjacent wards planned to be at same pressure level, the possibility of the spread through the leakages was found. Implications: When using portable units for making switching type wards, it is necessary to create airtight space and seal the non-operation diffusers. In case of operating the air handling unit, T.A.B must be performed to adjust the duct balancing.

Analysis of Sedimentation and Erosion Environment Change around the Halmi-island, Anmyeondo in West Coast of Korea (안면도 할미섬 주변의 침식·퇴적환경 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2012
  • In this study, we analyzed sedimentation and erosion environment around Halmiseom on Anmyeon Island using wind direction and wind speed data, gain size analysis data and datum-point measured values. To observe changes in sedimentation and erosion environment around Halmiseon, we installed datum points at 12 locations around Halmiseom and carried out at total of 32 field measurements from May 16th, 2010 to May 8th, 2012. The field measurement results showed that H-3, H-4, H-5 and H-9 points are dominated by sedimentation environment, and H-7, H-8, H-10, H-11 and H-12 points are dominated by erosion environment. Meanwhile, sedimentation and erosion appeared alternately at H-2 and H-6 points. These results indicate that a bank installed in the southwest side of Halmiseom prevented sand of the beach from moving to the northeast side, leaving the sand of the beach being deposited at the sites, and the northeast side, where sand was not provided from beach ridge of Halmiseon was dominated by sedimentation. That is, the southwest side of Halmiseom was dominated by sedimentation, but the northeast side was dominated by erosion in general. However, the opposite trends were observed at H-9 point of the northeast side and H-12 point of the southwest side. According to analysis, since H-9 point is located at the end of sand spit connected to Halmiseom, the supply of sediments by a tidal current is possible. On the other hand, it was difficult to analyze the cause of erosion in case of H-12 point located at the sand dune due to the short measurement period.

Development of Moisture Loss Index Based on Field Moisture Measurement using Portable Time Domain Reflectometer (TDR) for Cold In-place Recycled Pavements (휴대용 TDR 함수량계로 측정한 현장 함수비를 이용한 현장 상온 재활용 아스팔트 포장의 수분 감소계수 개발)

  • Kim, Yong-Joo;Lee, Ho-Sin David;Im, Soo-Hyok
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2011
  • The practice of asphalt pavement recycling has grown rapidly over the decade, one of which is the cold in-place recycling with the foamed asphalt (CIR-foam) or the emulsified asphalt (CIR-emulsion). Particularly, in Iowa, the CIR has been widely used in rehabilitating the rural highways because it significantly increases the service life of the existing pavement. The CIR layer is typically overlaid by the hot mix asphalt (HMA) to protect it from water ingress and traffic load and obtain the required pavement structure and texture. Most public agencies have different curing requirements based on the number of curing days or the maximum moisture contents for the CIR before placing the overlay. The main objective of this study is to develop a moisture loss index that the public agency can use to monitor the moisture content of CIR layers in preparation for a timely placement of the wearing surface. First, the moisture contents were measured in the field using a portable time domain reflectometry (TDR) device. Second, the weather information in terms of rain fall, air temperature, humidity and wind speed was collected from the same location. Finally, a moisture loss index was developed as a function of initial moisture content, air temperature, humidity and wind speed. The developed moisture loss index based on the field measurements would help the public agency to determine an optimum timing of an overlay placement without continually measuring moisture conditions in the field.

Downtime Analysis for Pohang New Harbor through Long-term Investigation of Waves and Winds (장기간 파.바람 조사를 통한 포항신항의 하역중단 원인 분석)

  • Jeong, Weon-Mu;Ryu, Kyong-Ho;Baek, Won-Dae;Choi, Hyuk-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.226-235
    • /
    • 2011
  • Field measurements of the winds and waves were carried out for one year at multiple locations inside and outside of the Pohang New Harbor in order to clarify the reason of downtimes frequently occurring at most of the harbor quays and to establish an efficient countermeasure. In addition, the downtime records of the quays and precipitation data provided by Korea Meteorological Agency were acquired for mutual comparison and comprehensive analysis of the cause of downtimes. Except the influence of precipitation, it was found that the downtimes occurred when the height of waves entering into the harbor incurred by either one of swell, wind seas, or mixture of both, exceeded a threshold. The seiche whose period ranges from 5 to 80 minutes, which was suspected as a possible cause of the downtimes, is shown to have no direct relation with the downtimes. Meanwhile, the height of far-infra-gravity waves whose period ranges between 0.5 and 3 minutes, propagating to the harbor mouth forced by short period waves, showed almost proportional relationship with the height of short period waves. Based on the result of this study, it is concluded that the downtime problems of Pohang New Harbor can be greatly improved by effectively preventing the entrance of short period waves such as swell or wind seas.

Analysis of Infiltration of Outdoor Particulate Matter into Apartment Buildings (외기 중 미세먼지의 공동주택 실내 유입에 관한 연구)

  • Bang, Jong-Il;Jo, Seong-Min;Sung, Min-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • Recently, concentration of fine and ultra-fine particulate matter(PM) has been increased in KOREA. The increase of PM in KOREA is due to increase of domestic industries and yellow dust from china. PM is known to cause diseases such as dyspnoea, asthma, arrhythmia. Since PM is harmful to human, KOREA Ministry of Environment(ME) warns people to stay indoors when the outdoor PM concentration is high. However, prior studies has shown that indoor PM concentration can be relatively high when outdoor PM concentration is high due to infiltration of PM into buildings though leakage areas. In this study, airtightness, indoor and outdoor pressure difference and PM 2.5 & 10 concentration were measured in an apartment complex to observe PM infiltrating into building. Field measurement was conducted in newly-built apartment buildings to avoid the influence of indoor PM which can be generated by residents. The airtightness test was conducted to identify the leakage areas of the apartment, such as electric outlets and supply/exhaust diffusers. The airtightness test result showed that the air leakage area of the building was dominant in buildings envelop. According to indoor and outdoor pressure difference measurement result and PM concentration measurement result, it can be concluded that outdoor PM can infiltrate into indoor by leakage areas when wind is blown toward the apartment. As a result, pressure difference formed by the external weather condition and architectural characteristics such as the airtightness in building can influence PM to infiltrate into buildings. In further studies, I/O ratio, stack-effect, infiltration and penetration factor will be considered.

L-band SAR-derived Sea Surface Wind Retrieval off the East Coast of Korea and Error Characteristics (L밴드 인공위성 SAR를 이용한 동해 연안 해상풍 산출 및 오차 특성)

  • Kim, Tae-Sung;Park, Kyung-Ae;Choi, Won-Moon;Hong, Sungwook;Choi, Byoung-Cheol;Shin, Inchul;Kim, Kyung-Ryul
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.477-487
    • /
    • 2012
  • Sea surface winds in the sea off the east coast of Korea were derived from L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data and their characteristics of errors were analyzed. We could retrieve high-resolution wind vectors off the east coast of Korea including the coastal region, which has been substantially unavailable from satellite scatterometers. Retrieved SAR-wind speeds showed a good agreement with in-situ buoy measurement by showing relatively small an root-mean-square (RMS) error of 0.67 m/s. Comparisons of the wind vectors from SAR and scatterometer presented RMS errors of 2.16 m/s and $19.24^{\circ}$, 3.62 m/s and $28.02^{\circ}$ for L-band GMF (Geophysical Model Function) algorithm 2009 and 2007, respectively, which tended to be somewhat higher than the expected limit of satellite scatterometer winds errors. L-band SAR-derived wind field exhibited the characteristic dependence on wind direction and incidence angle. The previous version (L-band GMF 2007) revealed large errors at small incidence angles of less than $21^{\circ}$. By contrast, the L-band GMF 2009, which improved the effect of incidence angle on the model function by considering a quadratic function instead of a linear relationship, greatly enhanced the quality of wind speed from 6.80 m/s to 1.14 m/s at small incident angles. This study addressed that the causes of wind retrieval errors should be intensively studied for diverse applications of L-band SAR-derived winds, especially in terms of the effects of wind direction and incidence angle, and other potential error sources.

Error Characteristics of Ship Radiated Noise Estimation by Sea Surface Scattering Effect (해면 산란효과에 의한 선박 방사소음 추정치 오차)

  • Park, Kyu-Chil;Park, Jihyun;Seo, Chulwon;Choi, Jae Yong;Lee, Phil-Ho;Yoon, Jong Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.563-573
    • /
    • 2013
  • The ship radiated noise level fluctuates by the interference between direct and reflected paths. The effect of sea surface reflection path on interference depends strongly on sea surface roughness. This paper describes error characteristics of ship acoustic signature estimation by sea surface scattering effect. The coherent reflection coefficient which explains a magnitude of sea surface scattering and its resultant interference acoustic field is analyzed quantitatively as a function of a grazing angle, effective surface height, frequency, source-receiver range and depths of source and receiver. Theoretical interference acoustic field is compared with experimental result for two different sea surfaces and five different frequencies by changing source-receiver range. It is found that both matches well each other and a magnitude of interference acoustic field is decreasing by increasing a grazing angle, effective surface height, frequency, and depths of source and receiver and decreasing source-receiver range. For given experimental conditions, the transmission anomaly which is a bias error of ship acoustic signature estimation, is about a range of 1~3 dB. The bias error of an existing ship radiated noise measurement system is also analyzed considering wind speed, source depth and frequency.

Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model (천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토)

  • Chun, Je-Ho;Ahn, Kyung-Mo;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-78
    • /
    • 2009
  • This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable to shallow water. The newly developed model is based on both POM (Princeton Ocean Model) for the surge and tide and WAM (WAve Model) for wind-generated waves, but is modified to be applicable to shallow water. In this paper which is the first paper of the two in a sequence, we verified the accuracy and numerical stability of the hydrodynamic part of the model which is responsible for the simulation of Typhoon generated surge and tide. In order to improve the accuracy and numerical stability of the combined model, we modified algorithms responsible for turbulent modeling as well as vertical velocity computation routine of POM. Verification of the model performance had been conducted by comparing numerical simulation results with analytic solutions as well as data obtained from field measurement. The modified POM is shown to be more accurate and numerically stable compare to the existing POM.

Detailed Measurement of Flow and Heat Transfer Downstream of Rectanglar Vortex Generators Using a Transient Liquid Crystal Technique (과도 액정 기법을 이용한 와동발생기 하류의 유동장 및 열전달 측정)

  • Hong, Cheol-Hyun;Yang, Jang-Sik;Lee, Ki-Baik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1618-1629
    • /
    • 2003
  • The effects of the interaction between flow field and heat transfer caused by the longitudinal vortices are experimentally investigated using a five hole probe and a transient liquid crystal technique. The test facility consists of a wind tunnel with vortex generators protruding from a bottom surface and a mesh heater. In order to control the strength of the longitudinal vortices, the angle of attack of vortex generators used in the present experiment is 20$^{\circ}$, and the spacing between the vortex generators is 25mm. The height and cord length of the vortex generator is 20mm and 50mm, respectively. Three-component mean velocity measurements are made using a f-hole probe system, and the surface temperature distribution is measured by the hue capturing method using a transient liquid crystal technique. The transient liquid crystal technique in measuring heat transfer has become one of the most effective ways in determining the full surface distributions of heat transfer coefficients. The key point of this technique is to convert the inlet flow temperature into an exponential temperature profile using the mesh heater set up in the wind tunnel. The conclusions obtained in the present experiment are as follows: The two maximum heat transfer values exist over the whole domain, and as the longitudinal vortices move to the farther downstream region, these peak values show the decreasing trends. These trends are also observed in the experimental results of other researchers to have used the uniform heat flux method.