• Title/Summary/Keyword: wind erosion

Search Result 92, Processing Time 0.023 seconds

Impact Analysis on the Coastal Erosion and Accretion due to Relocation of the Breakwaters

  • Lee, Seung-Chul;Lee, Joong-Woo;Kim, Kang-Min;Kim, Ki-Dam
    • Journal of Navigation and Port Research
    • /
    • v.32 no.4
    • /
    • pp.305-313
    • /
    • 2008
  • Recently it was known that the problems of nearshore processes and damage of berth and counter facilities frequently had appeared at the small fishery port, such as Daebang near Samcheonpo city, Korea. Here we try to analyze the impact of the rearrangement of counter facilities and berth layout adopted for tranquility of its inner harbor. Because this harbor is being connected to Daebang channel, the rearrangement of the structures might affect to the current speed and direction and wave height, so do to the sea bottom undulation. Therefore, we made model test for the several layouts of the berth and breakwater in this area. Numerical model result shows that the bottom was eroded by 1m by tidal currents and the speed of flow did not shrink, even after the construction work was completed. The direction of the sand movement was downdrift. Although the model study gave reasonable description of beach processes and approach channel sedimentation mechanism, it is necessary to compare with the field history, including the records of waves, tides and bottom materials, etc. for better prediction.

A Study of Distribution of Rainfall Erosivity in USLE/RUSLE for Estimation of Soil Loss (토양유식공식의 강우침식도 분포에 관한 연구)

  • Park, Jeong-Hwan;U, Hyo-Seop;Pyeon, Jong-Geun;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.603-610
    • /
    • 2000
  • Climate factors such as rainfall, temperature, wind, humidity, and solar radiant heat affect soil erosion. Among those factors, rainfall influences soil erosion to the most extent. The kinetic energy of rainfall breaks away soil particles and the water flow caused by the rainfall entrains and transport them downstream. In order to estimate soil erosion, therefore, it is important to determine the rainfall erosivity. In this study, the annual average Rainfall Erosivity(R) in Korea, an important factor of the Universal Soil Loss Equation(USLE) and Revised Equation(RUSLE), has been estimated using the nationwide rainfall data from 1973 to 1996. For this estimation, hourly rainfall data at 53 meterological stations managed by the Meterological Agency was used. It has been found from this study that the newly computed values for R are slightly larger than the existing ones. It would be because this study is based on the range of rainfall data that is longer in period and denser in the number of gauging stations than what the existing result used. The final result of this study is shown in the form the isoerodent map of Korea.

  • PDF

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.

Erosion and Recovery of Coastal Dunes after Tropical Storms (태풍의 통과로 인한 해안사구 지형의 침식과 회복)

  • Choi, Kwang Hee;Jung, Pil Mo;Kim, Yoonmi;Suh, Min Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • Coastal dunes help stabilize the coastal landscape and protect the hinterland through dynamic interaction with sand beaches. Sometimes dune erosion occurs during the tropical cyclones, while dune recovery may naturally follow after the event. As the typhoon Kompasu passed through the Korean Peninsula early-September in 2010, it caused a rise in water in association with the storm, wave run-ups, and heavy rains in coastal areas. As the result, coastal dunes along the west coast of Korea were severely damaged during the storm. However, the degree and extent of erosion and recovery of dunes were found to be related with the condition of beach-dune systems including gradients of foreshore and front slope of the dune, sediment supply, vegetation, wind activity, and human interferences. Some dunes retreated landward more and more after the erosional event, while others recovered its original profile by aeolian transport processes mainly during the winter season. Vegetated dunes with pine trees were less recovered after the erosion than grass-covered dunes. In addition, dunes with artificial defense were more eroded and less recovered than those without hard constructions. According to the observation after the severe storm, it is likely that the sand transport process is critical to the dune recovery. Therefore, the interactions between beach and dune must be properly evaluated from a geomorphological perspective for the effective management of coastal dunes, including natural recovery after the erosion by storm events.

Coastal Wave Hind-Casting Modelling Using ECMWF Wind Dataset (ECMWF 바람자료를 이용한 연안 파랑후측모델링)

  • Kang, Tae-Soon;Park, Jong-Jip;Eum, Ho-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.599-607
    • /
    • 2015
  • The purpose of this study is to reproduce long-term wave fields in coastal waters of Korea based on wave hind-casting modelling and discuss its applications. To validate wind data(NCEP, ECMWF, JMA-MSM), comparison of wind data was done with wave buoy data. JMA-MSM predicted wind data with high accuracy. But due to relatively longer period of ECMWF wind data as compared to that of JMA-MSM, wind data set of ECMWF(2001~2014) was used to perform wave hind-casting modelling. Results from numerical modelling were verified with the observed data of wave buoys installed by Korea Meteorological Administration(KMA) and Korea Hydrographic and Oceanographic Agency(KHOA) on offshore waters. The results agree well with observations at buoy stations, especially during the event periods such as a typhoon. Consequently, the wave data reproduced by wave hind-casting modelling was used to obtain missing data in wave observation buoys. The obtained missing data indicated underestimation of maximum wave height during the event period at some points of buoys. Reasons for such underestimation may be due to larger time interval and resolution of the input wind data, water depth and grid size etc. The methodology used in present study can be used to analyze coastal erosion data in conjunction with a wave characteristic of the event period in coastal areas. Additionally, the method can be used in the coastal disaster vulnerability assessment to generate wave points of interest.

Spatial Rainfall Considering Elevation and Estimation of Rain Erosivity Factor R in Revised USLE Using 1 Minute Rainfall Data and Program Development (고도를 고려한 공간강우분포와 1분 강우자료를 이용한 RUSLE의 강우침식인자(R) 산정 및 프로그램 개발)

  • JUNG, Chung-Gil;JANG, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.130-145
    • /
    • 2016
  • Soil erosion processes are affected by weather factors, such as rainfall, temperature, wind, and humidity. Among these factors, rainfall directly influences soil erosion by breaking away soil particles. The kinetic energy of rainfall and water flow caused by rain entrains and transports soil particles downstream. Therefore, in order to estimate soil erosion, it is important to accurately determine the rainfall erosivity factor(R) in RUSLE(Revised Universal Soil Loss Equation). The objective of this study is to evaluate the average annual R using 14 years(2002~2015) of 1 minute rainfall data from 55 KMA(Korea Meteorological Administration) weather stations. The R results from 1 min rainfall were compared with previous R studies using 1 h rainfall data. The determination coefficients($R^2$) between R calculated using 1 min rainfall data and annual rainfall were 0.70-0.98. The estimation of 30 min rainfall intensity from 1 min rainfall data showed better $R^2$ results than results from 1 h rainfall data. For estimation of physical spatial rain erosivity(R), distribution of annual rainfall was estimated by IDW(Inverse Distance Weights) interpolation, taking elevation into consideration. Because of the computation burden, the R calculation process was programmed using the python GUI(Graphical User Interface) tool.

Research on Construction of Lake dike Using Dredged soil (준설해사를 성토재로 활용한 방수제 단면에 관한 연구)

  • Seo, Dong-Uk;Kim, Hyeon-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.299-307
    • /
    • 2009
  • New lake dike in Saemanguem area is 125km length and require a great amount of fill materials, but it's difficult to get the amount of materials and develop a quarry because of environment conservation. Therefore, the solution is to use the dredged soil in project area as the fill materials not to develop quarry. However, characteristic of dredged soil as a silty fined sand is very weak at seepage, sliding, erosion of dike due to infiltration of rainfall, wind etc. So, lake dike using dredged soil must be constructed safely against the unstable problem of dredged sand. The objective of research is to make safe lake dike using dereged soil on construction of Saemangeum new lake dike. So, we analyzed the characteristic of dredged soil and suggested a standard section of lake dike.

  • PDF

Effect of Wind Load on Pile Foundation Stability in Solar Power Facilities on Slopes (풍하중이 경사지 태양광 발전시설의 기초 안정성에 미치는 영향 분석)

  • Woo, Jong-Won;Yu, Jeong-Yeon;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.47-60
    • /
    • 2023
  • At present, in South Korea, there is a growing concern regarding solar power facilities installed on slopes because they are prone to damage caused by natural disasters, such as heavy rainfall and typhoons. Each year, these solar power facilities experience soil erosion due to heavy rainfall and foundation damage or detachment caused by strong wind loads. Despite these challenges, the interaction between the ground and structures is not adequately considered. Current analyses primarily focus on the structural stability under external loads; the overall facility site's stability-excluding the solar structures-in relation to its surrounding slopes is neglected. Therefore, in this study, we use finite-difference method analysis to simulate the behavior of the foundation and piles to assess changes in lateral displacement and bending stress in piles, as well as the safety factor of sloped terrains, in response to various influencing factors, such as pile diameter, spacing between piles, pile-embedding depth, wind loads, and dry and wet conditions. The analysis results indicate that pile spacing and wind loads significantly influence lateral displacement and bending stress in piles, whereas pile-embedding depth strongly influences the safety factor of sloped terrains. Moreover, we found that under certain conditions, the design criteria in domestic standards may not be met.

Experimental Study on Energy Transmission Rate of Horizontal Dual Plate by Random Wave System (수평형(水平型) 이열(二列) 조합판(組合板)의 투과율(透過率) 산정(算定)을 위한 실험적(實驗的) 연구(硏究))

  • Kweon, Hyuck-Min;Kim, Young-Hak;Kee, Sung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.421-428
    • /
    • 2008
  • For last decades, the rapid coastal erosion process spreading along Korean peninsular has become a nuisance especially for tourism and local economy. Global warming and sea-level rise demand persistently new coastal protection strategies against the conventional methods using armored structures. In a view of this, Kweon et al. (2007) has proposed a new type of horizontal steel plates for an ideal candidate as eco-friendly detached breakwater systems for global warming era. The breakwater is composed of piles and horizontal porous plates that was devised for the optimized blockage effects and wave energy dissipations. This system provides outstanding performances as wave barrier and added advantages such as a rapid installation, an easy relocation, a perfect water circulation for the stagnation of pollutions in sheltered regions. The present experimental study focuses on the performance evaluations of the proposed system in wind wave conditions as a wave dissipator and reflector. The reflection, transmission, and energy dissipation of the random waves has been discussed in detail based on a newly proposed relation between wave steepness and a plate width normalized by wave length that are major factors affecting the wave transmission.