• Title/Summary/Keyword: wind disaster

검색결과 385건 처리시간 0.022초

풍력발전기용 나셀외장부의 경량화 및 강도향상에 관한 수치해석 (A Numerical Analysis for Light Weight and Strength Improvement of Wind Power System Nacelle Cover)

  • 강지웅;권오헌;정우열
    • 한국안전학회지
    • /
    • 제25권4호
    • /
    • pp.1-6
    • /
    • 2010
  • Wind power system is composed by 3 major parts, rotor blade, nacelle and tower. Especially, the nacelle cover has an important role to prevent the component of nacelle and rotor from an extreme external circumstance. Therefore it is necessary to analyze and evaluate the stress distribution and deformation for them in the design level. There are two major points in nacelle cover analysis. The one is nacelle cover itself and the other is cover support structure. According to GL specification, this study shows the result that CFRP nacelle cover of wind turbine satisfies the strength and deformation through numerical analysis using the commercial finite element analysis program.

태풍시기의 강풍피해 예측을 위한 지상풍 산정에 관한 연구(I) (The Study on the Strong Wind Damage Prediction for Estimation Surface Wind Speed of Typhoon Season(I))

  • 박종길;정우식;최효진
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.195-201
    • /
    • 2008
  • Damage from typhoon disaster can be mitigated by grasping and dealing with the damage promptly for the regions in typhoon track. What is this work, a technique to analyzed dangerousness of typhoon should be presupposed. This study estimated 10 m level wind speed using 700 hPa wind by typhoon, referring to GPS dropwindsonde study of Franklin(2003). For 700 hPa wind, 30 km resolution data of Regional Data Assimilation Prediction System(RDAPS) were used. For roughness length in estimating wind of 10 m level, landuse data of USGS are employed. For 10 m level wind speed of Typhoon Rusa in 2002, we sampled AWS site of $7.4{\sim}30km$ distant from typhoon center and compare them with observational data. The results show that the 10 m level wind speed is the estimation of maximum wind speed which can appear in surface by typhoon and it cannot be compared with general hourly observational data. Wind load on domestic buildings relies on probability distributions of extreme wind speed. Hence, calculated 10 m level wind speed is useful for estimating the damage structure from typhoon.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제26권4호
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

Analysis of the effect of blade positions on the aerodynamic performances of wind turbine tower-blade system in halt states

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Ge, Yaojun;Tamura, Yukio
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.205-221
    • /
    • 2017
  • The unsteady flow field disturbance between the blades and tower is one of the primary factors affecting the aerodynamic performance of wind turbine. Based on the research object of a 3MW horizontal axis wind turbine which was developed independently by Nanjing University of Aeronautics and Astronautics, numerical simulation on the aerodynamic performance of wind turbine system in halt state with blades in different position was conducted using large eddy simulation (LES) method. Based on the 3D unsteady numerical simulation results in a total of eight conditions (determined by the relative position with the tower during the complete rotation process of the blade), the characteristics of wind pressure distributions of the wind turbine system and action mechanism of surrounding flow field were analysed. The effect of different position of blades on the aerodynamic performance of wind turbine in halt state as well as the disturbance effect was evaluated. Results of the study showed that the halt position of blades had significant effect on the wind pressure distribution of the wind turbine system as well as the characteristics of flow around. Relevant conclusions from this study provided reference for the wind-resistant design of large scale wind turbine system in different halt states.

화학사고 피해저감을 위한 GIS 연계 복합시뮬레이션 프로토타입 개발에 관한 연구 (A Study on the Development of GIS-based Complex Simulation Prototype for Reducing the Damage of Chemical Accidents)

  • 김은별;오주연;이태욱;오원규;김현주;임동연
    • 대한원격탐사학회지
    • /
    • 제36권5_4호
    • /
    • pp.1255-1266
    • /
    • 2020
  • 본 연구에서는 화학사고에 따른 인명피해 저감을 위해서 신속하고 정확한 화학물질 확산 범위 예측을 위한 복합시뮬레이션 프로토타입을 개발하였다. 복합시뮬레이션은 화학물질의 누출 특성을 고려하고자 근거리 확산과정에서 누출 운동량을 고려하였다. 원거리 확산과정에서는 사고지점 주변의 기상 및 지형정보를 이용하여 획일적으로 제시되었던 기존 모델의 바람 분포를 개선하여 실제와 유사한 바람장을 구현하였다. 개선된 근·원거리 확산과정에 따라 최종적으로 피해확산 범위는 기존의 모델에 비해서 정밀한 분포를 나타냈다. 본 연구에서 개발된 복합시뮬레이션의 시간대별 피해 범위 예측 결과 통해서 화학사고 발생 후 주민 대피 및 복귀 등 정책적 의사결정의 지원시스템으로서 활용도가 높을 것으로 기대된다.

한반도 영향 태풍의 월별 최대풍 특징과 사례 연구 - 태풍 루사·매미·곤파스·볼라벤을 대상으로 - (Characteristics of Monthly Maximum Wind Speed of Typhoons Affecting the Korean Peninsula - Typhoon RUSA, MAEMI, KOMPASU, and BOLAVEN -)

  • 나하나;정우식
    • 한국환경과학회지
    • /
    • 제28권4호
    • /
    • pp.441-454
    • /
    • 2019
  • The present study analyzes the characteristics of 43 typhoons that affected the Korean Peninsula between 2002 and 2015. The analysis was based on 3-second gust measurements, which is the maximum wind speed relevant for typhoon disaster prevention, using a typhoon disaster prevention model. And the distribution and characteristics of the 3-second gusts of four typhoons, RUSA, MAEMI, KOMPASU, and BOLAVEN that caused great damage, were also analyzed. The analysis show that between May and October during which typhoons affected the Korean Peninsula, the month with the highest frequency was August(13 times), followed by July and September with 12 occurrences each. Furthermore, the 3-second gust was strongest at 21.2 m/s in September, followed by 19.6 m/s in August. These results show that the Korean Peninsula was most frequently affected by typhoons in August and September, and the 3-second gusts were also the strongest during these two months. Typhoons MAEMI and KOMPASU showed distribution of strong 3-second gusts in the right area of the typhoon path, whereas typhoons RUSA and BOLAVEN showed strong 3-second gusts over the entire Korean Peninsula. Moreover, 3-second gusts amount of the ratio of 0.7 % in case of RUSA, 0.8 % at MAEMI, 3.3 % at KOMPASU, and 21.8 % at BOLAVEN showed as "very strong", based on the typhoon intensity classification criteria of the Korea Meteorological Administration. Based on the results of this study, a database was built with the frequencies of the monthly typhoons and 3-second gust data for all typhoons that affected the Korean Peninsula, which could be used as the basic data for developing a typhoon disaster prevention system.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Crosswind effects on high-sided road vehicles with and without movement

  • Wang, Bin;Xu, You-Lin;Zhu, Le-Dong;Li, Yong-Le
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.155-180
    • /
    • 2014
  • The safety of road vehicles on the ground in crosswind has been investigated for many years. One of the most important fundamentals in the safety analysis is aerodynamic characteristics of a vehicle in crosswind. The most common way to study the aerodynamic characteristics of a vehicle in crosswind is wind tunnel tests to measure the aerodynamic coefficients and/or pressure coefficients of the vehicle. Due to the complexity of wind tunnel test equipment and procedure, the features of flow field around the vehicle are seldom explored in a wind tunnel, particularly for the vehicle moving on the ground. As a complementary to wind tunnel tests, the numerical method using computational fluid dynamics (CFD) can be employed as an effective tool to explore the aerodynamic characteristics of as well as flow features around the vehicle. This study explores crosswind effects on a high-sided lorry on the ground with and without movement through CFD simulations together with wind tunnel tests. Firstly, the aerodynamic forces on a stationary lorry model are measured in a wind tunnel, and the results are compared with the previous measurement results. The CFD with unsteady RANS method is then employed to simulate wind flow around and wind pressures on the stationary lorry. The numerical aerodynamic forces are compared with the wind tunnel test results. Furthermore, the same CFD method is extended to investigate the moving vehicle on the ground in crosswind. The results show that the CFD results match with wind tunnel test results and the current way using aerodynamic coefficients from a stationary vehicle in crosswind is acceptable. The CFD simulation can provide more insights on flow field and pressure distribution which are difficult to be obtained by wind tunnel tests.

Effect of hanging-type sand fence on characteristics of wind-sand flow fields

  • Cheng, Jian-jun;Lei, Jia-qiang;Li, Sheng-yu;Wang, Hai-feng
    • Wind and Structures
    • /
    • 제22권5호
    • /
    • pp.555-571
    • /
    • 2016
  • A hanging-type sand-retaining wall is a very common sand-blocking fence structure used to prevent sand movement. This type of wall is widely used along the Qinghai-Tibet and Gobi desert railways in Xinjiang, Western China. To analyze the characteristics of wind-sand flow fields under the effect of such a sand fence structure, a wind tunnel test and a field test were carried out. The wind tunnel test showed the zoning characteristics of the flow fields under the effect of the hanging-type sand-retaining wall, and the field test provided the sediment transport data for effective wind-proof interval and the sand resistance data in the front and behind the sand-retaining wall. The consistency of the wind-sand flow fields with the spatial distribution characteristic of wind-carried sand motion was verified by the correspondences of the acceleration zone in the flow field and the negative elevation points of the percentage variations of the sand collection rate. The spatial distribution characteristic of the field sand collection data further showed the spatial structural characteristic of the sandy air currents under the action of the hanging-type sand-retaining wall and the sand resistance characteristic of the sand-retaining wall. This systematic study on the wind-sand flow fields under the control of the hanging-type sand-retaining wall provides a theoretical basis for the rational layout of sand control engineering systems and the efficient utilization of a hanging-type sand-retaining wall.

Preconditioning technique for a simultaneous solution to wind-membrane interaction

  • Sun, Fang-jin;Gu, Ming
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.349-368
    • /
    • 2016
  • A preconditioning technique is presented for a simultaneous solution to wind-membrane interaction. In the simultaneous equations, a linear elastic model was employed to deal with the fluid-structure data transfer at the interface. A Lagrange multiplier was introduced to impose the specified boundary conditions at the interface and strongly coupled simultaneous equations are derived after space and time discretization. An initial linear elastic model preconditioner and modified one were derived by treating the linearized elastic model equation as a saddle point problem, respectively. Accordingly, initial and modified fluid-structure interaction (FSI) preconditioner for the simultaneous equations were derived based on the initial and modified linear elastic model preconditioners, respectively. Wind-membrane interaction analysis by the proposed preconditioners, for two and three dimensional membranous structures respectively, was performed. Comparison was made between the performance of initial and modified preconditioners by comparing parameters such as iteration numbers, relative residuals and convergence in FSI computation. The results show that the proposed preconditioning technique greatly improves calculation accuracy and efficiency. The priority of the modified FSI preconditioner is verified. The proposed preconditioning technique provides an efficient solution procedure and paves the way for practical application of simultaneous solution for wind-structure interaction computation.