• Title/Summary/Keyword: wind data

Search Result 3,332, Processing Time 0.047 seconds

The Impact of Renewable Energy Generation on the Level and Volatility of Electricity Price: The Case of Korea (재생에너지 발전 확대에 따른 전력계통한계가격의 변화)

  • Lee, Seojin;Yu, Jongmin
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.141-163
    • /
    • 2022
  • This paper empirically analyzes the effect of renewable electricity generation on the System Marginal Price (SMP) in Korea. Using an ARX-GARCHX model with hourly data from 2016 to 2020, we evaluate SMP determinants and merit order effects. As a result, we find that solar and wind power, as well as gas price and total load, play a critical role in the SMP. In particular, solar power reduces the SMP level but raises volatility during peak and off-peak periods. This result implies that SMP may fall as renewable electricity generation increases, leading to a decrease in the profitability of existing power plants and investment in renewables. On the other hand, even if the subsidy of renewable energy increases the burden on the SMP, it can be offset by the merit order effect, which lowers the SMP.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Relationship between Low-level Clouds and Large-scale Environmental Conditions around the Globe

  • Sungsu Park;Chanwoo Song;Daeok Youn
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.712-736
    • /
    • 2022
  • To understand the characteristics of low-level clouds (CLs), environmental variables are composited on each CL using individual surface observations and six-hourly upper-air meteorologies around the globe. Individual CLs has its own distinct environmental conditions. Over the eastern subtropical and western North Pacific Ocean in JJA, stratocumulus (CL5) has a colder sea surface temperature (SST), stronger and lower inversion, and more low-level cloud amount (LCA) than the climatology whereas cumulus (CL12) has the opposite characteristics. Over the eastern subtropical Pacific, CL5 and CL12 are influenced by cold and warm advection within the PBL, respectively but have similar cold advection over the western North Pacific. This indicates that the fundamental physical process distinguishing CL5 and CL12 is not the horizontal temperature advection but the interaction with the underlying sea surface, i.e., the deepening-decoupling of PBL and the positive feedback between shortwave radiation and SST. Over the western North Pacific during JJA, sky-obscuring fog (CL11), no low-level cloud (CL0), and fair weather stratus (CL6) are associated with anomalous warm advection, surface-based inversion, mean upward flow, and moist mid-troposphere with the strongest anomalies for CL11 followed by CL0. Over the western North Pacific during DJF, bad weather stratus (CL7) occurs in the warm front of the extratropical cyclone with anomalous upward flow while cumulonimbus (CL39) occurs on the rear side of the cold front with anomalous downward flow. Over the tropical oceans, CL7 has strong positive (negative) anomalies of temperature in the upper troposphere (PBL), relative humidity, and surface wind speed in association with the mesoscale convective system while CL12 has the opposite anomalies and CL39 is in between.

Development of an outline project cost calculation module for disaster prevention facilities in the living area due to winds and floods (풍수해 생활권 방재시설에 대한 개략 사업비 산정 모듈 개발)

  • Kim, Sol;Lee, Dong Seop;Lee, Jong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • Due to natural disasters such as heavy rain that occurred in the metropolitan area in August 2022, human casualties and property damage are increasing. Accordingly, the government is making efforts to respond to natural disasters, but due to the absence of related standards and standardized standards, problems such as increased construction costs and deterioration in construction quality for disaster prevention facility maintenance projects are occurring. Accordingly, a rough construction cost estimation module was developed and applied to 25 new pumping stations in Korea. As a result of the analysis, the accuracy of the rough construction cost derived through the module recorded 70% of the detailed design cost, which is 4% higher than the previously used rough construction cost accuracy of 66% by the Ministry of Environment. Accordingly, it is expected that the efficiency of the disaster prevention project can be increased if the developed module is used to calculate the rough construction cost for storm and flood disaster prevention in the future.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Experimental study on vehicle-induced unsteady flow in tunnel (터널에서 차량의 운행에 의해 생성되는 비정상 유동에 대한 실험적 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.411-417
    • /
    • 2009
  • The thermo-flow field in road tunnel is influenced by some facts such as piston effect of vehicle's move, operation of ventilation facilities, natural wind and buoyancy effect of fire plume. Among those, piston effect is one of primary causes for formation of air flow in road tunnel and has an effect on initial direction of smoke flow in tunnel fire. In this study to analyze the unsteady flow in the tunnel caused by the run of vehicle, the experimental study of vehicle-induced unsteady flow on a reduced-scale model tunnel is presented. While the three types of vehicle shape such as basic type of rectangular shape, diamond-head type and stair-tail type are changed, the pressure and air velocity variations with time are measured. The rising ratio of pressure and velocity are in order of "basic type of rectangular shape > stair-tail type > diamond-head type". The experimental results would be good data for development of a numerical method on the vehicle-induced unsteady tunnel flow.

A study on the characteristic analysis of danso vibrato tones (단소의 비브라토 특성 분석에 대한 연구)

  • Hee-Suk Pang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.552-558
    • /
    • 2023
  • The characteristics of the vibrato of danso, one of the wind instruments in Korean traditional music, have not been studied much. In this study, the characteristics of the vibrato of danso were analyzed using monotones and musical performances. In particular, intonation, vibrato rate, and vibrato extent were measured as a function of time, and their average values for each vibrato tone were also calculated. The results for vibrato rate showed that the vibrato tended to start slowly and then increase very quickly and significantly and the average values for each tone were observed to have a very wide range, which shows that the characteristics of the vibrato of danso are different from those in Western music. In addition, monotones and musical performances showed some different results in vibrato rate and vibrato extent. There have not been many studies that have quantified the intonation, vibrato rate, and vibrato extent in Korean traditional musical instruments, and this is especially true in the case of danso. The results in this study can be used as basic data on danso vibrato. For example, they can be used as reference materials in education, danso virtual instruments, and danso applications.

Modal parameter identification of tall buildings based on variational mode decomposition and energy separation

  • Kang Cai;Mingfeng Huang;Xiao Li;Haiwei Xu;Binbin Li;Chen Yang
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.445-460
    • /
    • 2023
  • Accurate estimation of modal parameters (i.e., natural frequency, damping ratio) of tall buildings is of great importance to their structural design, structural health monitoring, vibration control, and state assessment. Based on the combination of variational mode decomposition, smoothed discrete energy separation algorithm-1, and Half-cycle energy operator (VMD-SH), this paper presents a method for structural modal parameter estimation. The variational mode decomposition is proved to be effective and reliable for decomposing the mixed-signal with low frequencies and damping ratios, and the validity of both smoothed discrete energy separation algorithm-1 and Half-cycle energy operator in the modal identification of a single modal system is verified. By incorporating these techniques, the VMD-SH method is able to accurately identify and extract the various modes present in a signal, providing improved insights into its underlying structure and behavior. Subsequently, a numerical study of a four-story frame structure is conducted using the Newmark-β method, and it is found that the relative errors of natural frequency and damping ratio estimated by the presented method are much smaller than those by traditional methods, validating the effectiveness and accuracy of the combined method for the modal identification of the multi-modal system. Furthermore, the presented method is employed to estimate modal parameters of a full-scale tall building utilizing acceleration responses. The identified results verify the applicability and accuracy of the presented VMD-SH method in field measurements. The study demonstrates the effectiveness and robustness of the proposed VMD-SH method in accurately estimating modal parameters of tall buildings from acceleration response data.

Polar Mesospheric Summer Echo Characteristics in Magnetic Local Time and Height Profiles

  • Young-Sook Lee;Ram Singh;Geonhwa Jee;Young-Sil Kwak;Yong Ha Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.101-111
    • /
    • 2023
  • We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere-stratosphere-troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0-4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3-4 MLT for K ≥ 3. From case studies focusing on the 0-3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85-88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.

Cross-Sectional Structural Stiffness Prediction Model for Rotor Blade Based on Deep Neural Network (심층신경망 기반 회전익 블레이드의 단면 구조 강성 예측 모델)

  • Byeongju Kang;Seongwoo Cheon;Haeseong Cho;Youngjung Kee;Taeseong Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • In this paper, two prediction models based on deep neural network that could predict cross-sectional stiffness of a rotor blade were proposed. Herein, we employed structural and material information of cross-section. In the case of a prediction model that used material properties as the input of the network, it was designed to predict the cross-sectional stiffness by considering elastic modulus of each cross-sectional member. In the case of the prediction model that used structural information as a network input, it was designed to predict the cross-sectional stiffness by considering the location and thickness of cross-sectional members as network input. Both prediction models based on a deep neural network were realized using data obtained by cross-sectional analysis with KSAC2D (Konkuk section analysis code - two-dimensional).