• Title/Summary/Keyword: wind data

Search Result 3,332, Processing Time 0.038 seconds

Application of Non-hydrostatic Free Surface Model for Three-Dimensional Viscous Flows (비정수압 자유수면 모형의 3차원 점성 흐름에의 적용)

  • Choi, Doo-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.4
    • /
    • pp.349-360
    • /
    • 2012
  • A horizontally curvilinear non-hydrostatic free surface model that was applicable to three-dimensional viscous flows was developed. The proposed model employed a top-layer equation to close kinematic free-surface boundary condition, and an isotropic k-${\varepsilon}$ model to close turbulence viscosity in the Reynolds averaged Navier-Stokes equation. The model solved the governing equations with a fractional step method, which solved intermediate velocities in the advection-diffusion step, and corrects these provisional velocities by accounting for source terms including pressure gradient and gravity acceleration. Numerical applications were implemented to the wind-driven currents in a two-dimensional closed basin, the flow in a steep-sided trench, and the flow in a strongly-curved channel accounting for secondary current by the centrifugal force. Through the numerical simulations, the model showed its capability that were in good agreement with experimental data with respect to free surface elevation, velocity, and turbulence characteristics.

Numerical Modeling for the Effect of High-rise Buildings on Meteorological Fields over the Coastal Area Using Urbanized MM5 (중/도시규모 기상모델을 이용한 고층건물군이 연안도시기상장에 미치는 영향 수치모델링)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.495-505
    • /
    • 2012
  • Modeling the effects of high-rise buildings on thermo-dynamic conditions and meteorological fields over a coastal urban area was conducted using the modified meso-urban meteorological model (Urbanized MM5; uMM5) with the urban canopy parameterization (UCP) and the high-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). Sensitivity simulations was performed during a typical sea-breeze episode (4~8 August 2006). Comparison between simulations with real urban morphology and changed urban morphology (i.e. high-rise buildings to low residential houses) showed that high-rise buildings could play an important role in urban heat island and land-sea breeze circulation. The major changes in urban meteorologic conditions are followings: significant increase in daytime temperature nearly by $1.0^{\circ}C$ due to sensible heat flux emitted from high density residential houses, decrease in nighttime temperature nearly by $1.0^{\circ}C$ because of the reduction in the storage heat flux emitted from high-rise buildings, and large increase in wind speed (maximum 2 m $s^{-1}$) during the daytime due to lessen drag-force or increased gradient temperature over coastal area.

A COMPARATIVE STUDY OF GRAZING BEHAVIOUR OF TEDDY GOATS VERSUS THALLI SHEEP

  • Wahid, A.;Hanjra, S.H.;Iqbal, A.;Raza, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.681-685
    • /
    • 1992
  • Experiment involved range vegetation classified into three major classes: Xerophytic trees, shrubs and grasses. Among them samples of major plant species were collected and analysed for chemical composition. The experimental animals 20 each of Thalli sheep and Teddy goats, located at Livestock Experiment Station Rakh Kharewala district Layyah (Pakistan) were randomly drawn from the main flock. The grazing pattern data were collected from one animal of each species. The observations regarding the grazing behaviour, breeding efficiency and carcass quality were also determined. It was found that overall preference index of Teddy goats were higher for Khabble (Cynodon dactylon) indicated by percent of the total number of bites made on different plant species, while the bites on Lumb (Aristida plumose), Mahabbat booti (Cenchrus biflorus), Dhaman (Cenchrus ciliaris) and Karera (Elionorus hirsutus) were found to be 1.28, 6.74, 0.32 and 3.87 percents. The browsing species as a whole were utilized more during the draught period. Among the grasses, sheep heavily utilized Khabble grass, with overall bite percentage of 89.27. Within browsing species Wan (Salvadora oleoides) and wind fallen dry leaves of Wan were considerably picked by the sheep showing 1.19 and 3.49 overall bite percentage respectively. The overall daily growth rates & dressing percentage for Teddy goats and Thalli sheep were 48.33, 39.00 and 51.00, 46.00 percent respectively. Moreover, among the experimental animals 50 percent goats exhibited signs of oestrus where as none of the sheep came into heat during the study period.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.4
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).

A wing-tail interference for a tail-controlled missile (꼬리날개 조종 유도무기의 주날개-꼬리날개 간섭 현상)

  • Kim, Duk-Hyun;Lee, Dae-Yeon;Kang, Dong-gi;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.817-824
    • /
    • 2017
  • This paper presents the characteristics of wing-tail interference for a tail-controlled missile. The magnitude of wing-tail interference was calculated with wind tunnel test results and its effects on aerodynamic coefficients were investigated. The downwash angle of tail wing was calculated with experimental data and the effect of wing-tail interference was expressed as a ratio of angle of attack. Numerical simulations were made to examine flow characteristics of wing-tail interference and the vorticity contour of missile were compared with respect to angle of attack. Experimental and numerical analysis results show that the wing-tail interference has significant effects on static stability of tail-controlled missile.

Aerodynamic Features of Maple Seeds in the Autorotative Flight (자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.843-852
    • /
    • 2016
  • The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.

A Sensitivity Study of WRF Model Simulations to Nudging Methods for A Yeongdong Heavy Snowfall Event (영동 대설 사례를 대상으로 한 WRF Simulation의 Nudging 방법에 따른 민감도 연구)

  • Choi, Ji Won;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.99-115
    • /
    • 2015
  • To investigate the influences of the observational nudging and the analysis nudging on the WRF simulation for the heavy snowfall event in Yeongdong area on 26 February 2012, the sensitivity experiments in relation to nudging effects were conducted. We initially set the magnitude of nudging coefficient of $6.0{\times}10^{-4}s^{-1}$ to apply to the analysis nudging experiments and observational experiments. To select the optimized options for the observational nudging, the radius influence experiment was carried out with radii ranging from 10 to 25 km at 5 km intervals. Among the observational nudging experiments, the experiment, which was conducted with the option of the radius influence of 15 km and that of the nudging coefficient of $6.0{\times}10^{-4}s^{-1}$ (ONG exp.), showed a best result. As giving the nudging effect only directly on D1 and D2 brought about a better result for the analysis nudging, we set the analysis nudging experiment as above (ANG exp.). We compared and analyzed the results from the control experiment, ONG experiment, and ANG experiment to reveal nudging effects. It was found that the control experiment brought about a result that it overestimated its precipitation in comparison with the observation and failed to properly simulate the time zone of rainfall concentration. When either of the two nudging (observational and analysis nudging) was applied to the data assimilation, it brought about a better result than the control experiment. Especially the observational nudging led to a meaningful result for the wind field, while the analysis nudging had the best result for the precipitation distribution among the experiments.

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

A measurement of flow noise spectrum of an axisymmetric body (축대칭 3차원 물체의 유동 소음 스펙트럼 측정)

  • Park, Yeon-Gyu;Kim, Yang-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.725-733
    • /
    • 1998
  • The pressure fluctuation on the surface of a submerged body has been recognized as a dominant noise source. There have been many studies concerning the flow induced noise on a flat plate. However, the noise over an axisymmetric body has not been well reported. This paper addresses the way in which we have investigated the mechanism of noise generation due to an axisymmetric body. The associated experiments and signal processing methods are introduced. A 3-dimensional axisymmetric body whose length and diameter were 2 m and 10.4 cm, was prepared as a test specimen. The wall pressure on the surface of the body was measured in a large scale low noise wind tunnel at KIMM(Korea Institute of Machinery and Metals). To measure the wall pressure, we used two microphone arrays which were tangential and normal to the flow. Based on the measured signal, frequency-wavenumber spectrum which explains the structure of turbulence noise, was estimated. Tangential to the flow, there exists convective ridge at a relatively higher wavenumber region; this can cause spatial aliasing. To circumvent this problem, the cross spectrum was interpolated. The interpolation has been performed by unwrapping the phase and smoothing the cross spectrum. The phase unwrapping was done based on the Corcos model; the phase of cross spectrum decreases linearly with the distance between microphones. Aforementioned signal processings are possible by employing the experimental results that the estimated wavenumber spectrum quite resembles the Corcos model. We try to modify the Corcos model which is applicable to the flat plate, by altering the magnitude of cross spectrum to fit the experimental data more accurately. We proposed that this wavenumber spectrum model is suitable for the 3-dimensional axisymmetric body. Normal to the flow, there exists a little correlation between signals of different microphones. The circumferential wavenumber spectrum contains uniform power along the wavenumbers.