An investigation on reliability of reanalysis wind data was conducted using the met mast wind data at four coastal regions, Jeju Island. Shinchang, Handong, Udo and Gangjeong sites were chosen for the met mast sites, and ERA-Interim and MERRA reanalysis data at two points on the sea around Jeju Island were analyzed for creating Wind Statistics of WindPRO software. Reliability of reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those from Wind Statistics of WindPRO software. The relative error was calculated for annual average wind speed, wind power density and annual energy production. In addition, Weibull wind speed distribution and monthly energy production were analyzed in detail. As a result, ERA-Interim reanalysis data was more suitable for wind resource assessment than MERRA reanalysis data.
We focused on effects on data assimilation of simulated wind fields by using upper-air observations (wind profiler and sonde data). Local Analysis Prediction System (LAPS), a type of data assimilation system, was used for wind field modeling. Five cases of simulation experiments for sensitivity analysis were performed: which are EXP0) non data assimilation, EXP1) surface data, EXP2) surface data and sonde data, EXP3) surface data and wind profiler data, EXP4) surface data, sonde data and wind profiler data. These were compared with observation data. The result showed that the effects of data assimilation with wind profiler data were found to be greater than sonde data. The delicate wind fields in complex coastal area were simulated well in EXP3. EXP3 and EXP4 using wind profiler data with vertically high resolution represented well sophisticated differences of wind speed compared with EXP1 and EXP2, this is because the effects of wind profiler data assimilation were sensitively adjusted to first guess field than those of sonde observations.
In this study, synthetic time series wind data was generated numerically using a second-order Markov chain. One year of wind data in 2020 measured by the AWS on Wido Island was used to investigate the statistics for measured wind data. Both the transition probability matrix and the cumulative transition probability matrix for annual hourly mean wind speed were obtained through statistical analysis. Probability density distribution along the wind speed and autocorrelation according to time were compared with the first- and the second-order Markov chains with various lengths of time series wind data. Probability density distributions for measured wind data and synthetic wind data using the first- and the second-order Markov chains were also compared to each other. For the case of the second-order Markov chain, some improvement of the autocorrelation was verified. It turns out that the autocorrelation converges to zero according to increasing the wind speed when the data size is sufficiently large. The generation of artificial wind data is expected to be useful as input data for virtual digital twin wind turbines.
The investigation on reliability of ERA-Interim reanalysis wind data was conducted using wind data from the five met masts measured at inland and coastal areas, Jeju island. Shinchang, Handong, Udo, Susan and Cheongsoo sites were chosen for the met mast location. ERA-Interim reanalysis data at onshore and offshore twenty points over Jeju Island were analyzed for creating Wind Statistics using WindPRO software. Reliability of ERA-Interim reanalysis wind data was assessed by comparing the statistics from the met mast wind data with those predicted at the interest point using the Wind Statistics. The relative errors were calculated for annual average wind speed and annual energy production. In addition, the trend of the error was analyzed with distance from met mast. As a result, ERA-Interim reanalysis wind data was more suitable for offshore wind resource assessment than onshore.
In order to examine how accurately the wind farm design software, WindPRO and Meteodyn WT, predict annual energy production (AEP), an investigation was carried out for Seongsan wind farm of Jeju Island. The one-year wind data was measured from wind sensors on met masts of Susan and Sumang which are 2.3 km, and 18 km away from Seongsan wind farm, respectively. MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis data was also analyzed for the same period of time. The real AEP data came from SCADA system of Seongsan wind farm, which was compare with AEP data predicted by WindPRO and Meteodyn WT. As a result, AEP predicted by Meteodyn WT was lower than that by WindPRO. The analysis of using wind data from met masts led to the conclusion that AEP prediction by CFD software, Meteodyn WT, is not always more accurate than that by linear program software, WindPRO. However, when MERRA reanalysis data was used, Meteodyn WT predicted AEP more accurately than WindPRO.
Kim, Byung-Min;Kim, Hyun-Gi;Kwon, Soon-Yeol;Yoo, Neung-Soo;Paek, In-Su
Journal of Industrial Technology
/
v.35
/
pp.95-102
/
2015
Two extreme wind speed prediction models, the EWM(Extreme wind speed model) in IEC61400-1 and the Gumbel method were compared in this study. The two models were used to predict extreme wind speeds of six different sites in Korea and the results were compared with long term wind data. The NCAR reanalysis data were used for inputs to two models. Various periods of input wind data were tried from 1 year to 50 years and the results were compared with the 50 year maximum wind speed of NCAR wind data. It was found that the EWM model underpredicted the extreme wind speed more than 5 % for two sites. Predictions from Gumbel method overpredicted the extreme wind speed or underpredicted it less than 5 % for all cases when the period of the input data is longer than 10 years. The period of the input wind data less than 3 years resulted in large prediction errors for Gumbel method. Predictions from the EWM model were not, however, much affected by the period of the input wind data.
In the present study, the wind characteristics were analyzed according to the time averages to evaluate the performance of small wind turbines required for the development of energy independent village. Measuring data of wind speed were recorded between January 2016 and April 2016 every second. Experimental data is averaged out using 5, 10, 15, 20 and 30 minute time steps. Throughout the experimental data analysis, 5 minutes averaged data is used to analyze the performance of the wind turbine, because it produces a minimum turbulence intensity in wind speed. The measuring power of the wind turbine is less than the designed value due to the unsteady nature wind of sudden changes in magnitude of wind speed and wind angle. Detailed wind conditions are also analysed using two variable Weibull probability density functions.
The wind field measurement of severe winds such as hurricanes (or typhoons), thunderstorm downbursts and other gales is important issue in wind engineering community, both for the construction and health monitoring of the wind-sensitive structures. Although several wireless data transmission systems have been available for the wind field measurement, most of them are not specially designed for the wind data measurement in structural wind engineering. Therefore, the field collection is still dominant in the field of structural wind engineering at present, especially for the measurement of the long-term and high-frequency wind speed data. In this study, for remote wind field measurement, a novel wireless long-term and high-frequency wind data acquisition system with the functions such as remote control and data compression is developed. The system structure and the collector are firstly presented. Subsequently, main functions of the collector are introduced. Also novel functions of the system and the comparison with existing systems are presented. Furthermore, the performance of this system is evaluated. In addition to as the wireless transmission for wind data and hardware integration for the collector, the developed system possesses a few novel features, such as the modification of wind data collection parameters by the remote control, the remarkable data compression before the data wireless transmission and monitoring the data collection by the cell phone application. It can be expected that this system would have wide applications in wind, meteorological and other communities.
To establish an offshore wind turbine test site, a wind resource assessment of the candidate site is required as a preliminary procedure. The wind resource assessment must be performed with at least one year of wind data. If the assessment is performed with short-term wind data, the results cannot validate the wind conditions of the candidate site. This study performs wind resource assessment of Kokunsangun-do to investigate the wind conditions of the candidate site. The wind data is measured by the Automatic Weather System (AWS) of the Korea Meteorological Administration, located at Maldo. The data is for five years, measured from 2013 to 2017. Measured wind data is statistically processed with a 10-minute average scheme to find out the dominant wind direction and wind power density, with yearly wind speed distribution (Weibull-based). This study contributes to build a database of wind energy resources around Maldo. Also, the results of this study could be used for the establishment of an offshore wind turbine test site.
Statistical distributions are very useful in describing wind speed characteristics and in predicting wind power potential of a specified region. Although the Weibull distribution is the most popular one in wind energy literature, it does not seem to be able to perfectly fit all the investigated wind speed data in nature. Thus, many studies are still being conducted to find flexible distribution for modelling wind speed data. In this study, we propose a new Odd-Burr Rayleigh distribution for wind speed characterization. The Odd-Burr Rayleigh distribution with two shape parameters is flexible enough to model different shapes of wind speed data and thus it can be an alternative wind speed distribution for the assessment of wind energy potential. Therefore, suitability of the Odd-Burr Rayleigh distribution is investigated on real wind speed data taken from different regions in the South Africa. Numerical results of the conducted analysis confirm that the new Odd-Burr Rayleigh distribution is suitable for modelling most of the considered real wind speed cases and it also can be used for predicting wind power.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.