• Title/Summary/Keyword: wind buoy

Search Result 136, Processing Time 0.028 seconds

A Buoy Drifting Simulation in the Korea Strait (대한해협의 부표표류 시뮬레이션)

  • 최병호;김경환;김영규;방인권
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.379-392
    • /
    • 1995
  • An initial attempt to establish predictive system of sea surface current and trajectories of drifting bodies for seas adjacent to Korea is described. A predictive system for the Korea Strait area was first set up based on Data Tables for surface tidal currents, surface wind-driven currents and density-driven currents. Simulations thus performed were in general agreements with satellite tracking buoy observations available in this region.

  • PDF

Comparison of Weather and Wave Data from Ocean Observation Buoys on the Southwestern Coast of Korea during Typhoon Muifa (태풍 무이파 내습시 서남해안 해양관측부이 기상파랑자료 비교 연구)

  • Yoon, Han-Sam;Kwon, Jun-Hyeok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.170-176
    • /
    • 2012
  • This paper analyzes the sea state and characteristics during the August 2011 passage of Typhoon Muifa based on data measured at four ocean weather/wave observation stations (buoys) located on the southwestern coast of Korea. When the typhoon arrived in the area approximately 230 km west of Mokpo at 9 PM on August 7, the decrease in air pressure led to increases in sea level of 25.64 cm at the Chilbal-do buoy, 16.43 cm at the Geomun-do buoy, and 9.60 cm at the Geoje-do buoy. The maximum wave height increased at the Geomun-do buoy about seven times faster than at the Chilbal-do buoy. The low water temperature at Chilbaldo during the typhoon passage probably reduced the wave energy. In the face of the oncoming typhoon, the southwest direction of the wind and waves may have been the result of external forces transporting seawater (energy) from the open sea toward the coast. The weather and ocean data from the Mara-do buoy were negatively correlated with those of Chilbal-do, whereas the data from Geomun-do had a positive correlation with those of Geoje-do.

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

Analysis for gillnet loss in the West Sea using numerical modeling (수치 모델링을 이용한 홑자망 어구의 유실 원인 분석)

  • LEE, Gun-Ho;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.600-613
    • /
    • 2015
  • The Fishing gear loss has been repeated every year in the West Sea; however, there has been no solution. So fisher men have undergone economic loss every year. Thus it is required to reduce the loss of fishing gear. In this study to find out the reason that the fishing gear is lost in the Sea, 10 years data of wave and current for 6 locations in the West Sea were investigated and a numerical modelling were conducted into the behaviour of a gillnet in wave and current. The fishing gear was modelled with the mass spring model. As a result, it came out into the open that the location where fishing gear loss occurred most frequently was Choongnam province. The height of the maximum significant wave in this province was 6.7 m and the period of that was 4.4 second. The maximum current speed was 0.7 m/s. As a result of simulation with these data, it was revealed that the buoy is one of the reasons to decrease the holding power of the gillnet. For example, the tension of anchor rope was decreased to 50% while the drag coefficient or volume of buoy was decreased to 25%. So it is predicted that an improvement of the buoy contributes to the reduction of the gillnet loss.

Convergence system of offshore wind infrastructure monitoring using the RC submarine (RC잠수함을 이용한 해상풍력하부구조 모니터링 융합시스템)

  • Bang, Gul-Won;Bang, Sang-Won;Kim, Yong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.177-183
    • /
    • 2015
  • The image information acquired by a model submarine is transmitted through the repeater. The control signal of a position for submarine and its speed is also controlled by the repeater. Shooting images of underwater circumstances are transmitted to the repeater where the received signal controls a position and speed of underwater submarine. This repeater is combined by a buoy that is floating on the surface to relay the signal of image as well as control between a control unit and a submarine whereas the repeater communicates wirelessly with a control unit. Due to wire communication between the repeater and the submarine, the underwater exploration can be smoothly carried out without a risk of loss of a model submarine. Also, connecting to the repeater and control unit wirelessly makes it possible to conduct easily the underwater exploration. The convergence technology that combines a wireless communication and a control as well as a model submarine is designed.

Structural Dynamics Analyses of a 5MW Floating Offshore Wind-Turbine Using Equivalent Modeling Technique (등가모델링기법을 이용한 5MW급 부유식 해상용 풍력발전기 구조동역학해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Kim, Dong-Hwan;Kim, Bong-Yung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, the computational structural dynamic modeling of floating offshore wind turbine system is presented using efficient equivalent modeling technique. Structural dynamic behaviors of the offshore floating platform with 5MW wind turbine system have been analyzed using computational multi-body dynamics based on the finite element method. The considered platform configuration of the present offshore wind turbine model is the typical spar-buoy type. Equivalent stiffness and damping properties of the floating platform were extracted from the results of the baseline model. Dynamic responses for the floating wind turbine models are presented and compared to investigate its structural dynamic characteristics. It is important shown that the results of the present equivalent modeling technique show good and reasonable agreements with those by the fully coupled analysis considering complex floating body dynamics.

  • PDF

Improvements in the simulation of sea surface wind over the complex coastal area- I : Assessment of current operational model (복잡 해안지역 해상풍 모의의 정확도 개선- I : 현업모델의 평가)

  • Bae Joo-Hyun;Kim Yoo-Keun;Oh In-Bo;Jeong Ju-Hee;Kweon Ji-Hye;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.657-667
    • /
    • 2005
  • In this study, we focused on the improvements in the simulation of sea surface wind over the complex coastal area. MM5 model being currently used to predict sea surface wind at Korea Meteorological Administration, was used to verify the accuracy to estimate the local wind field. A case study was performed on clear days with weak wind speed(4 m/s), chosen by the analysis of observations. The model simulations were conducted in the southeastern area of Korea during the selected periods, and observational data such as AWS, buoy and QuikSCAT were used to compare with the calculated wind components to investigate if simulated wind field could follow the tendency of the real atmospheric wind field. Results showed that current operational model, MM5, does not estimate accurately sea surface wind and the wind over the coastal area. The calculated wind speed was overestimated along the complex coastal regions but it was underestimated in islands and over the sea. The calculated diurnal changes of wind direction could not follow well the tendency of the observed wind, especially at nighttime. In order to exceed the limitations, data assimilation with high resolution data and more specificated geographical information is expected as a next best policy to estimate accurately the environment of local marine wind field.

A Study on the Additional Installation of Coastal Wave Buoys in Smooth Water Areas to Prevent Marine Accidents (해양사고 예방을 위한 평수구역 내 파고부이 추가설치 검토)

  • Min-Kyoon Kang;Dong-Il Seol
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.350-357
    • /
    • 2023
  • Marine accidents frequently occur due to the unreasonable operation of ships excluded from ship departure control during marine special weather warnings within smooth water areas. Coastal wave buoys installed in smooth water areas are major reference indicators for ship departure control and can be seen as being directly connected to the safety of ships navigating smooth water areas and the coast. In this study, the location appropriateness of currently operating coastal wave buoys and additional installation in the smooth water areas were assessed by analyzing coastal marine accidents over the past 30 years (1991-2020), the main wind direction and wind speed of each major trading port, and the GICOMS ship track data in 2018. The study results showed that an additional coastal wave buoy should be installed at each of the major trading ports(Inchon Port, Pohang Port, Ulsan Port, and Busan Port) and that the location of the coastal wave buoy needs to be moved in the case of Busan Port. Based on various data analysis in this study, the suggestion for an additional installation and movement of the coastal wave buoy presented in this study is expected to contribute to improving the reliability of ship departure control and resolving safety blind spots.

Wind-driven Current in the East Sea Observed from Mini-met Drifters (기상뜰개로 관측된 동해에서의 취송류)

  • Lee, Dong-Kyu
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • A wind-driven current in the East Sea from Lagrangian measurements of wind and current at 15 m using MiniMet drifters was analyzed. Spectral analysis of the current from 217 pieces of a 10 day-long time series shows the dominant energy at the inertial frequency for the current at 15 m. Wind has energy peaks at a 0.2-0.5 cycles per day (cpd) frequency band. The power spectrum of the clockwise rotating component is predominant for the current and was 1.5-2 times larger than the anticlockwise rotating component for wind. Co-spectra between the wind and current show two peak frequency bands at subinertial frequency and 0.5-0.3 cpd. Coherences between the wind and current at those peak frequencies are significant with 95% confidence and phase differences were $90-100^{\circ}$. From the phase differences, the efolding depth is estimated as 17 m and this e-folding depth is smaller than the estimation by Chereskin's (1999) 25 m using a moored Acoustic Doppler Current Profiler and an anemometer installed at the surface buoy. The angle between the wind-driven current (or ageostrophic current) and wind from this study was also much larger than the global estimate by Rio and Hernandez (2003) using reanalysis wind and drifters. The possible explanation for the discrepancy comes from the fact that the current is driven by a wind of smaller length scale than 250 km but the satellite or the reanalysis products do not resolve winds of length scale smaller than 250 km. Large rms differences between Mini-Met and QuickSCAT wind on spatial lags smaller than 175 km substantiate this explanation.

An Analysis of the Impact of Building Wind by Field Observation in Haeundae LCT Area, South Korea: Typhoon Omais in 2021

  • Byeonggug Kang;Jongyeong Kim;Yongju Kwon;Joowon Choi;Youngsu Jang;Soonchul Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.380-389
    • /
    • 2022
  • In the Haeundae area of Busan, South Korea, damage has continued to occur recently from building wind from caused by dense skyscrapers. Five wind observation stations were installed near LCT residential towers in Haeundae to analyze the effect of building winds during typhoon Omais. The impact of building wind was analyzed through relative and absolute evaluations. At an intersection located southeast of LCT (L-2), the strongest wind speed was measured during the monitoring. The maximum average wind speed for one minute was observed to be 38.93 m/s, which is about three times stronger than at an ocean observation buoy (12.7 m/s) at the same time. It is expected that 3 to 4 times stronger wind can be induced under certain conditions compared to the surrounding areas due to the building wind effect. In a Beaufort wind scale analysis, the wind speed at an ocean observatory was mostly distributed at Beaufort number 4, and the maximum was 8. At L-2, more than 50% of the wind speed exceeded Beaufort number 4, and numbers up to 12 were observed. However, since actual measurement has a limitation in analyzing the entire range, cross-validation with computational fluid dynamics simulation data is required to understand the characteristics of building winds.