• Title/Summary/Keyword: wind actions

Search Result 77, Processing Time 0.021 seconds

Codes and standards on computational wind engineering for structural design: State of art and recent trends

  • Luca Bruno;Nicolas Coste;Claudio Mannini;Alessandro Mariotti;Luca Patruno;Paolo Schito;Giuseppe Vairo
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.133-151
    • /
    • 2023
  • This paper first provides a wide overview about the design codes and standards covering the use of Computational Wind Engineering / Computational Fluid Dynamics (CWE/CFD) for wind-sensitive structures and built environment. Second, the paper sets out the basic assumptions and underlying concepts of the new Annex T "Simulations by Computational Fluid Dynamics (CFD/CWE)" of the revised version "Guide for the assessment of wind actions and effects on structures" issued by the Advisory Committee on Technical Recommendations for Constructions of the Italian National Research Council in February 2019 and drafted by the members of the Special Interest Group on Computational Wind Engineering of the Italian Association for Wind Engineering (ANIV-CWE). The same group is currently advising UNI CT021/SC1 in supporting the drafting of the new Annex K - "Derivation of design parameters from wind tunnel tests and numerical simulations" of the revised Eurocode 1: Actions on structures - Part 1-4: General actions - Wind actions. Finally, the paper outlines the subjects most open to development at the technical and applicative level.

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

prEN 1991-1-4:2021: the draft Second Generation Eurocode on wind actions on structures - A personal view

  • Francesco Ricciardelli
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.79-94
    • /
    • 2023
  • This paper traces the drafting of the new EN 1991-1-4 Eurocode 1 - Actions on structures - Part 1-4: General actions - Wind actions within Mandate M/515 of the European Commission to CEN, for the evolution of structural Eurocodes towards their Second Generation. Work of the Project Team started in August 2017 and ended in April 2020, with delivery of a final draft for public enquiry. The revised document contains several modifications with respect to the existing 2005 version, and new sections were added, covering aspect not dealt with in the previous version. It has a renovated structure, with a main text limited in size and containing only fundamental material; all the remaining information, either normative or informative is arranged into thirteen annexes. Common to other Eurocode Parts, general requests from CEN were those of reducing the number of Nationally Determined Parameters and of enhancing the ease of use. More specific requests were those of (a) the drafting of a European design wind map, (b) improving wind models, (c) reviewing force and pressure coefficients, (d) reviewing the procedures for evaluation of the dynamic response, as well as (e) making editorial improvements aimed at a more user friendly document. The author had the privilege to serve as Project Team member for the drafting of the new document, and this paper brings his personal view concerning some general aspects of wind code writing, and some more specific aspects about the particular document.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Wind induced response of an elevated steel water tank

  • Sepe, Vincenzo;Zingali, Antonino E.
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.383-398
    • /
    • 2001
  • The paper describes the results of the monitoring of an elevated steel water-tank with unusual shape, 85 m high and 40 m wide. The research was carried out analysing both the static and dynamic behaviour under wind actions. The instruments used (some of which were employed for the first time for this project) are described and the data processing procedures are discussed. Comparison between the experimental results and those obtained through a numerical model gives interesting information both on the structural behaviour and on the characterisation of wind actions.

Investigation of wind actions and effects on the Leaning Tower of Pisa

  • Solari, Giovanni;Reinhold, Timothy A.;Livesey, Flora
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.1-23
    • /
    • 1998
  • This paper describes wind investigations for the Leaning Tower of Pisa which were conducted as part of an overall evaluation of its behaviour. Normally a short, stiff and heavy building would not be a candidate for detailed wind analyses. However, because of extremely high soil pressures developed from its inclination, there has been increasing concern that environmental loading such as wind actions could combine with existing conditions to cause the collapse of the tower. The studies involved wind assessment at the site as a function of wind direction, analysis of historical wind data to determine extreme wind probabilities of occurrence, estimation of structural properties, analytical and boundary layer wind tunnel investigations of wind loads and evaluation of the response with special concern for loads in the direction of inclination of the tower and significant wake effects from the neighboring cathedral for critical wind directions. The conclusions discuss the role of wind on structural safety, the precision of results attained and possible future studies involving field measurements aimed at validating or improving the analytical and boundary layer wind tunnel based assessments.

Ductility-based design approach of tall buildings under wind loads

  • Elezaby, Fouad;Damatty, Ashraf El
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • The wind design of buildings is typically based on strength provisions under ultimate loads. This is unlike the ductility-based approach used in seismic design, which allows inelastic actions to take place in the structure under extreme seismic events. This research investigates the application of a similar concept in wind engineering. In seismic design, the elastic forces resulting from an extreme event of high return period are reduced by a load reduction factor chosen by the designer and accordingly a certain ductility capacity needs to be achieved by the structure. Two reasons have triggered the investigation of this ductility-based concept under wind loads. Firstly, there is a trend in the design codes to increase the return period used in wind design approaching the large return period used in seismic design. Secondly, the structure always possesses a certain level of ductility that the wind design does not benefit from. Many technical issues arise when applying a ductility-based approach under wind loads. The use of reduced design loads will lead to the design of a more flexible structure with larger natural periods. While this might be beneficial for seismic response, it is not necessarily the case for the wind response, where increasing the flexibility is expected to increase the fluctuating response. This particular issue is examined by considering a case study of a sixty-five-story high-rise building previously tested at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario using a pressure model. A three-dimensional finite element model is developed for the building. The wind pressures from the tested rigid model are applied to the finite element model and a time history dynamic analysis is conducted. The time history variation of the straining actions on various structure elements of the building are evaluated and decomposed into mean, background and fluctuating components. A reduction factor is applied to the fluctuating components and a modified time history response of the straining actions is calculated. The building components are redesigned under this set of reduced straining actions and its fundamental period is then evaluated. A new set of loads is calculated based on the modified period and is compared to the set of loads associated with the original structure. This is followed by non-linear static pushover analysis conducted individually on each shear wall module after redesigning these walls. The ductility demand of shear walls with reduced cross sections is assessed to justify the application of the load reduction factor "R".

Performance-based Wind-resistant Design for High-rise Structures in Japan

  • Nakai, Masayoshi;Hirakawa, Kiyoaki;Yamanaka, Masayuki;Okuda, Hirofumi;Konishi, Atsuo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.271-283
    • /
    • 2013
  • This paper introduces the current status of high-rise building design in Japan, with reference to some recent projects. Firstly, the design approval system and procedures for high-rise buildings and structures in Japan are introduced. Then, performance-based wind-resistant design of a 300 m-high building, Abeno Harukas, is introduced, where building configuration, superstructure systems and various damping devices are sophisticatedly integrated to ensure a higher level of safety and comfort against wind actions. Next, design of a 213 m-high building is introduced with special attention to habitability against the wind-induced horizontal motion. Finally, performance-based wind-resistant design of a 634 m-high tower, Tokyo Sky Tree, is introduced. For this structure, the core column system was adopted to satisfy the strict design requirements due to the severest level of seismic excitations and wind actions.

On the Development of Typhoon Avoidance Simulation System with the Evaluating Method by Seakeeping Performance of Ship

  • Song Chae-Uk;Kong Gil-Young;Jin Guo-Zhu
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A simulation system is needed to train students and mariners in order that they can take suitable actions to evade typhoon's strike promptly and sufficiently. In order to make such kind of system, three kinds of models about the typhoon are necessary, typhoon prediction model to generate typhoon's track, wind & wave-field model to make sea conditions around the typhoon and evaluation model of trainee's action whether their actions were suitable or not during simulation. We have developed the prediction and wind & wave-field models of typhoon, but the evaluation model has not been developed yet. In this paper, after making a method for evaluating trainee's actions by seakeeping performance, we propose an typhoon avoidance simulation system for training mariners so that they can promote their abilities to evade the typhoons at sea.

Equivalent static wind loads for stability design of large span roof structures

  • Gu, Ming;Huang, Youqin
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.95-115
    • /
    • 2015
  • Wind effects on roofs are usually considered by equivalent static wind loads based on the equivalence of displacement or internal force for structural design. However, for large-span spatial structures that are prone to dynamic instability under strong winds, such equivalent static wind loads may be inapplicable. The dynamic stability of spatial structures under unsteady wind forces is therefore studied in this paper. A new concept and its corresponding method for dynamic instability-aimed equivalent static wind loads are proposed for structural engineers. The method is applied in the dynamic stability design of an actual double-layer cylindrical reticulated shell under wind actions. An experimental-numerical method is adopted to study the dynamic stability of the shell and the dynamic instability originating from critical wind velocity. The dynamic instability-aimed equivalent static wind loads of the shell are obtained.