• Title/Summary/Keyword: wildfire danger

Search Result 5, Processing Time 0.021 seconds

Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index (Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구)

  • Lee, Mina;Hong, Seungbum;Park, Seon Ki
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.

A Feasibility Study on the Application of TVDI on Accessing Wildfire Danger in the Korean Peninsula (한반도 지역 산불 발생 위험도 예측에 TVDI 적용 가능성 고찰)

  • Kim, Kwang Nyun;Kim, Seung Hee;Won, Myoung Soo;Jang, Keun Chang;Choi, Won Jun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1197-1208
    • /
    • 2019
  • Wildfire is a major natural disaster affecting socioeconomics and ecology. Remote sensing data have been widely used to estimate the wildfire danger with an advantage of higher spatial resolution. Among the several wildfire related indices using remote sensing data, Temperature Vegetation Dryness Index (TVDI) assesses wildfire danger based on both Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Although TVDI has physical advantages by considering both weather and vegetation condition, previous studies have shown TVDI does not performed well compare to other wildfire related indices over the Korean Peninsula. In this study we have attempted multiple modification to improve TVDI performance over the study region. In-situ measured air temperature was employed to increase accuracy, regression line was generated using monthly data to include seasonal effect, and TVDI was calculated at each province level to consider vegetation type and local climate. The modified TVDI calculation method was evaluated in wildfire cases and showed significant improvement in wildfire danger estimation.

Variability and Changes of Wildfire Potential over East Asia from 1981 to 2020 (1981-2020년 기간 동아시아 지역 산불 발생 위험도의 변동성 및 변화 특성)

  • Lee, June-Yi;Lee, Doo Young
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Wildfires, which occur sporadically and irregularly worldwide, are distinct natural disturbances in combustible vegetation areas, important parts of the global carbon cycle, and natural disasters that cause severe public emergencies. While many previous studies have investigated the variability and changes in wildfires globally based on fire emissions, burned areas, and fire weather indices, studies on East Asia are still limited. Here, we explore the characteristics of variability and changes in wildfire danger over East Asia by analyzing the fire weather index for the 40 years-1981-2020. The first empirical orthogonal function (EOF) mode of fire weather index variability represents an increasing trend in wildfire danger over most parts of East Asia over the last 40 years, accounting for 29% of the total variance. The major contributor is an increase in the surface temperature in East Asia associated with global warming and multidecadal ocean variations. The effect of temperature was slightly offset by the increase in soil moisture. The second EOF mode exhibits considerable interannual variability associated with the El Nino-Southern Oscillation, accounting for 17% of the total variance. The increase (decrease) in precipitation in East Asia during El Nino (La Nina) increases (decreases) soil moisture, which in turn reduces (increases) wildfire danger. This dominant soil moisture effect was slightly offset by the temperature increase (decrease) during El Nino (La Nina). Improving the understanding of variability and changes in wildfire danger will have important implications for reducing social, economic, and ecological losses associated with wildfire occurrences.

Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea (기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석)

  • Kong, Inhak;Kim, Kwangjin;Lee, Yangwon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.107-120
    • /
    • 2017
  • There are many wildfire risk indices worldwide, but objective comparisons between such various wildfire risk indices and surface dryness indices have not been conducted for the wildfire cases in Korea. This paper describes a sensitivity analysis on the wildfire risk indices and surface dryness indices for Korea using LDAPS(Local Analysis and Prediction System) meteorological dataset on a 1.5-km grid and MODIS(Moderate-resolution Imaging Spectroradiometer) satellite images on a 1-km grid. We analyzed the meteorology-based wildfire risk indices such as the Australian FFDI(forest fire danger index), the Canadian FFMC(fine fuel moisture code), the American HI(Haines index), and the academically presented MNI(modified Nesterov index). Also we examined the satellite-based surface dryness indices such as NDDI(normalized difference drought index) and TVDI(temperature vegetation dryness index). As a result of the comparisons between the six indices regarding 120 wildfire cases with the area damaged over 1ha during the period between January 2013 and May 2017, we found that the FFDI and FFMC showed a good predictability for most wildfire cases but the MNI and TVDI were not suitable for Korea. The NDDI can be used as a proxy parameter for wildfire risk because its average CDF(cumulative distribution function) scores were stably high irrespective of fire size. The indices tested in this paper should be carefully chosen and used in an integrated way so that they can contribute to wildfire forecasting in Korea.

Regional Optimization of Forest Fire Danger Index (FFDI) and its Application to 2022 North Korea Wildfires (산불위험지수 지역최적화를 통한 2022년 북한산불 사례분석)

  • Youn, Youjeong;Kim, Seoyeon;Choi, Soyeon;Park, Ganghyun;Kang, Jonggu;Kim, Geunah;Kwon, Chunguen;Seo, Kyungwon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1847-1859
    • /
    • 2022
  • Wildfires in North Korea can have a directly or indirectly affect South Korea if they go south to the Demilitarized Zone. Therefore, this study calculates the regional optimized Forest Fire Danger Index (FFDI) based on Local Data Assessment and Prediction System (LDAPS) weather data to obtain forest fire risk in North Korea, and applied it to the cases in Goseong-gun and Cheorwon-gun, North Korea in April 2022. As a result, the suitability was confirmed as the FFDI at the time of ignition corresponded to the risk class Extreme and Severe sections, respectively. In addition, a qualitative comparison of the risk map and the soil moisture map before and after the wildfire, the correlation was grasped. A new forest fire risk index that combines drought factors such as soil moisture, Standardized Precipitation Index (SPI), and Normalized Difference Water Index (NDWI) will be needed in the future.