• 제목/요약/키워드: wild rice

검색결과 301건 처리시간 0.025초

Genetic Diversity Estimation of the Rice Mutant Lines Induced by Sodium Azide

  • Shin, Young-Seop;Jeung, Ji-Ung
    • 한국육종학회지
    • /
    • 제43권1호
    • /
    • pp.23-31
    • /
    • 2011
  • To investigate dose-effect of a chemical mutagen, sodium azide on a rice elite line, Suweon472, seed aliquots were treated with five different concentrations of sodium azide. The degree of mutation levels of each aizde concentration were estimated by using DNA fingerprinting techniques such as RAPD and AFLP. Some selected mutant lines ($M_4$) were also subjected for DNA fingerprinting to estimate their mutation levels by comparing the banding patterns of the wild type, Suweon 472. RAPD and AFLP fingerprinting patterns indicated that dose-effect of different azide concentrations was not clear. With allele description of detected AFLPs among favorable mutant lines, it was possible to discriminate each mutant line from others which have similar phenotypes and reactions against pathogens. AFLP fingerprinting patterns of waxy mutant lines, otherwise, were highly homogeneous as well as their phenotypic and agronomic characters.

Screening methods for drought and salinity tolerance with transgenic rice seedlings

  • Song, Jae-Young;Song, Seon-Kyeong;Yu, Dal-A;Kim, Me-Sun;Kang, Kwon Kyoo;Cho, Yong-Gu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.165-165
    • /
    • 2017
  • Abiotic stress is one of the major serious limiting factors in rice (Oryza sativa) and caused rice production losses. It is important to precisely screen valuable genetic resources for improving stress tolerance and understanding tolerance mechanism to abiotic stresses. Because there are differences of experiment designs for screening of tolerant plant in several studies related to abiotic stress, this study has performed to provide the rapid and efficiency screening method for selection of tolerance rice to drought and salinity stresses. Two week-old rice seedlings that reached about three leaf stage were treated with drought and salinity stresses and examined tolerant levels with tolerant and susceptible control varieties, and transgenic plants. To determine the optimum concentration for the selection of drought and salinity condition, tolerant, susceptible and wild-type plants were grown under three soil moisture contents (5, 10 and 20% water contents) and three NaCl concentrations (100, 200 and 250 mM) for 10 days at seedling stage. 200 mM NaCl concentration and 5% moisture content soil were determined as the optimum conditions, respectively. The described methodologies in this study are simple and efficiency and might help the selection of drought and salinity tolerance plants at the 3,4-leaf-seedling stage.

  • PDF

Identification and Characterization of New Copia-like Retrotransposon Osr1 in Rice

  • Lee, Yong-Hwan;Jwa, Nam-Soo;Park, Sook-Young;Park, Chan-Ho;Han, Seong-Sook
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.57-63
    • /
    • 2003
  • An insertion sequence identified as a solo long terminal repeat (LTR) of a new rice copia-like retrotransposon was detected in the ORE of the Pi-b gene from the rice cv. Nipponbare, and was designated as Osr1. Osr1 consists of a 6386 bp nucleotide sequence including 965 bp LTRs on both ends with an 82% nucleotide sequence identity to the wheat Tarl retrotransposon on reverse transcriptase. Nucleotide divergence was noted among the individual LTRs, as well as the coding region of Osr1. Various restriction fragment length polymorphism (RFLP) of LTR were detected in indica cultivars, whereas, only a few could be detected in the japonica cultivars. The population of Osr1 is lower in the wild-type rice compared with that in the domesticated cultivars. The insertion of LTR sequence in the h-b gene in the susceptible cultivar suggested that retro-tyansposon-mediated insertional mutation might play an important role in the resistance breakdown, as well as in the evolution of resistance genes in rice.

Positive Regulator, a Rice C3H2C3-type RING Finger Protein H2-3(OsRFPH2-3), in Response to Salt Stress

  • Min Seok Choi;Cheol Seong Jang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.156-156
    • /
    • 2023
  • Salinity is a major abiotic stress that limits rice productivity in many regions of the world. In order to develop salt stress tolerant rice plants, genetic engineering is a promising approach. We characterized the molecular function of rice C3H2C3 as a really interesting new gene (RING). Oryza sativa RING finger protein H2-3 (OsRFPH2-3) was highly expressed in 100 mM NaCl. To identify the localization of OsRFPH2-3, we fused vectors that include C-terminal GFP protein (35S;;OsRFPH2-3-GFP). OsRFPH2-3 was expressed in the nucleus in rice protoplasts. An in vitro ubiquitin assay demonstrated that OsRFPH2-3 possessed E3-ubiquitin ligase activity. However, the mutated OsRFPH2-3 were not possessed any E3-ubiquitin ligase activity. Under salinity conditions, OsRFPH2-3-overexpressing plants exhibited higher chlorophyll, proline, SOD, POD, CAT, and soluble sugar contents and lower H2O2 accumulation than wild-type plants, supporting transgenic plants with enhanced salinity tolerance phenotypes. OsRFPH2-3-overexpressing plants exhibited low Na+ accumulation and Na+/K+ ratios in their roots. Theses results suggest that overexpression of OsRFPH2-3 can make plant insensitivity about salinity conditions.

  • PDF

Overproduction of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) confers resistance to the herbicide glyphosate in transgenic rice

  • Lee, Soo-In;Kim, Hyun-Uk;Shin, Dong-Jin;Kim, Jin-A;Hong, Joon-Ki;Kim, Young-Mi;Lee, Yeon-Hee;Koo, Bon-Sung;Kwon, Sun-Jong;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • 제38권4호
    • /
    • pp.272-277
    • /
    • 2011
  • Plants expressing Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) are known to be resistant to glyphosate, a potent herbicide that inhibits the activity of the endogenous plant EPSPS. In order to develop herbicide-resistant rice, we prepared transgenic rice plants with CP4 EPSPS gene under the control of CaMV 35S promoter for over-expression. A recombinant plasmid was transformed into rice via Agrobacterium-mediated transformation. A large number of transgenic rice plants were obtained with glyphosate and most of the transformants showed fertile. The integration and expression of CP4 EPSPS gene from regenerated plants was analyzed by Southern and northern blot analysis. The transgenic rice plants had CP4 EPSPS enzyme activity levels more than 15-fold higher than the wild-type plants. EPSPS enzyme activity of transgenic rice plants was also identified by strip-test method. Field trial of transgenic rice plants further confirmed that they can be selectively survived at 100% by spay of glyphosate (Roundup$^{(R)}$) at a regular dose used for conventional rice weed control.

Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

  • Su, Yanjing;Zhao, Guoqi;Wei, Zhenwu;Yan, Changjie;Liu, Sujiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.800-805
    • /
    • 2012
  • Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase) and its wild type (WT) were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p<0.01) and a lower leaf blade proportion (25.21% vs 32.14%, p<0.01) than WT. Chemical composition analysis showed that BM rice straw was significantly (p<0.01) higher in CP (crude protein), hemicellulose and acid insoluble ash (AIA) contents, but lower in dry matter (DM), acid detergent fiber (ADFom) and cellulose contents when compared to WT. No significant difference (p>0.05) was detected in neutral detergent fiber (NDFom) and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05). The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05), but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants.

The cloning and characterization of the small GTP-binding Protein RacB in rice.

  • Jung, Young-Ho;Jaw, Nam-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.81.2-82
    • /
    • 2003
  • Plants have evolved along with pathogens, and they have developed sophisticated defense systems against specific microorganisms to survive. G-protons are considered one of the upstream signaling components working as a key for the defense signal transduction pathway. For activation and inactivation of G-protein, GTP-biding proteins are involved. GTP -binding proteins are found in all organisms. Small GTP-binding proteins, having masses of 21 to 30kD, belong to a superfamily, often named the Ras supefamily because the founding members are encoded by human Ras genes initially discovered as cellular homologs of the viral ras oncogene. Members of this supefamily share several common structural features, including several guanine nucleotide binding domains and an effector binding domain. However, exhibiting a remarkable diversity in both structure and function. They are important molecular switches that cycle between the GDP-bound inactive form into the GTP-bound active form through GDP/GTP replacement. In addition, most GTP-binding proteins cycle between membrane-bound and cytosolic forms. such as the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture secondary wall formation, meristem signaling, and defense against pathogens. But their molecular mechanisms and functions are not well known. We isolated a RacB homolog from rice to study its role of defense against pathogens. We introduced the constitutively active and the dominant negative forms of the GTP-hinging protein OsRacB into the wild type rice. The dominant negative foms are using two forms (full-sequence and specific RNA interference with RacB). Employing southern, and protein analysis, we examine to different things between the wild type and the transformed plant. And analyzing biolistic bombardment of onion epidermal cell with GFP-RacB fusion protein revealed association with the nucle.

  • PDF

Fusarium proliferatum KGL0401 as a New Gibberellin-Producing Fungus

  • Rim, Soon-Ok;Lee, Jin-Hyung;Choi, Wha-Youl;Hwang, Seon-Kap;Seok, Jong-Suh;Lee, In-Joong;Rhee, In-Koo;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.809-814
    • /
    • 2005
  • Gibberellins (GAs) play an important role in plant growth and development. Fifteen fungi were isolated from Physalis alkekengi var francheti plant roots, and among them, four isolates showed GA-production activity. A bioassay using waito-c rice was carried out with the culture fluid of the GA-producing fungi. The GA-producing fungi were cultured for 7 days in Czapek's liquid medium at $30^{\circ}C$, 120 rpm, under dark conditions. The culture broth was concentrated 30-fold and 10 ${\mu}l$ of that concentrate was applied to 2-leaf rice sprouts. The height of the rice seedlings treated with the culture fluid of isolate PA08 was 26 cm high, while that of the seedlings treated with the wild-type Gibberella fujikuroi was 13 cm high. As such, the plant growth-promoting activity exhibited by isolate PA08 was 2 times stronger than that exhibited by the wild-type G fujikuroi. The amounts of $GA_l,\;GA_3,\;GA_4,\;GA_7,\;GA_9,\;GA_{20}$, and $GA_{24}$ in the medium were measured using gas chromatography-mass spectrometry (GC-MS), and the quantities produced by isolate PA08 were 4.85 ng/ml, 4.79 ng/ml, 17.30 ng/ml, 6.01 ng/ml, 16.61 ng/ ml, 0.08 ng/ml, and 17.30 ng/ml, respectively. Isolate PA08 was also identified as Fusarium proliferatum KGL0401 by a genetic analysis of the nucleotide sequences of the internal transcribed spacer region of the ribosomal DNA.

A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus

  • Kim, Taehyun;Lee, Song Hee;Oh, Young Taek;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.314-322
    • /
    • 2020
  • Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of MoHDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Wound-inoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.