• Title/Summary/Keyword: wideband spectrum sensing

Search Result 15, Processing Time 0.02 seconds

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.

A Dynamic QoS Model for improving the throughput of Wideband Spectrum Sharing in Cognitive Radio Networks

  • Manivannan, K.;Ravichandran, C.G.;Durai, B. Sakthi Karthi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3731-3750
    • /
    • 2014
  • This paper considers a wideband cognitive radio network (WCRN) which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and studies the ergodic throughput of the WCRN that operated under: the wideband sensing-based spectrum sharing (WSSS) scheme and the wideband opportunistic spectrum access (WOSA) scheme. In our analysis, besides the average interference power constraint at PU, the average transmit power constraint of SU is also considered for the two schemes and a novel cognitive radio sensing frame that allows data transmission and spectrum sensing at the same time is utilized, and then the maximization throughput problem is solved by developing a gradient projection method. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Collaborative Wideband Spectrum Sensing with Distance Based Weight Combining for Cognitive Radio System (인지무선 시스템을 위한 거리기반 가중결합을 이용한 협력 광대역 스펙트럼 센싱)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • In this paper, we analysis wideband spectrum sensing with distance based weight combining for Cognitive Radio (CR) systems. CR systems is implemented the spectrum of the Primary User(PU) by using a energy detection method. Threshold is determined in accordance with the constant false alarm rate (CFAR) algorithm for energy detection. The signal of PU is BPSK signal and the wireless channel between a PU and CR systems is modeled as Gaussian channel. From the simulation results, the wideband sensing with distance based and Distance based weight Combing (DWC) methods shows higher spectrum sensing performance than single CR user spectrum sensing.

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

Adaptive Adjustment of Compressed Measurements for Wideband Spectrum Sensing

  • Gao, Yulong;Zhang, Wei;Ma, Yongkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.58-78
    • /
    • 2016
  • Compressed sensing (CS) possesses the potential benefits for spectrum sensing of wideband signal in cognitive radio. The sparsity of signal in frequency domain denotes the number of occupied channels for spectrum sensing. This paper presents a scheme of adaptively adjusting the number of compressed measurements to reduce the unnecessary computational complexity when priori information about the sparsity of signal cannot be acquired. Firstly, a method of sparsity estimation is introduced because the sparsity of signal is not available in some cognitive radio environments, and the relationship between the amount of used data and estimation accuracy is discussed. Then the SNR of the compressed signal is derived in the closed form. Based on the SNR of the compressed signal and estimated sparsity, an adaptive algorithm of adjusting the number of compressed measurements is proposed. Finally, some simulations are performed, and the results illustrate that the simulations agree with theoretical analysis, which prove the effectiveness of the proposed adaptive adjusting of compressed measurements.

Performance Analysis of Collaborative Wideband Sensing Scheme based on Energy Detection with User Selection for Cognitive Radio (에너지검출 기반 협력 광대역 센싱에서 사용자 선택에 따른 센싱 성능 분석)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.72-77
    • /
    • 2011
  • Spectrum sensing is a critical functionality of CR network; it allow secondary user to detect spectral holes and to opportunistically use under-utilized frequency bands without causing harmful interference to primary use. Recently, wideband service has been increase for processing abundance of data traffic. So CR network needs a realizable implementation design of spectrum sensing for wideband. To get high resolution performance of wideband sensing must precede algorithm processing for reliability signal detection. By the way, the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome this problem, we propose system model of wideband sensing scheme on energy detected collaborative technique. we divide wideband into narrowbands and use narrowbands to detect signal excepting some narrowbands including bad channel through the CSI. And we simulate and analyze in terms of detection probability with various SNR.

Broadband Spectrum Sensing of Distributed Modulated Wideband Converter Based on Markov Random Field

  • Li, Zhi;Zhu, Jiawei;Xu, Ziyong;Hua, Wei
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.237-245
    • /
    • 2018
  • The Distributed Modulated Wideband Converter (DMWC) is a networking system developed from the Modulated Wideband Converter, which converts all sampling channels into sensing nodes with number variables to implement signal undersampling. When the number of sparse subbands changes, the number of nodes can be adjusted flexibly to improve the reconstruction rate. Owing to the different attenuations of distributed nodes in different locations, it is worthwhile to find out how to select the optimal sensing node as the sampling channel. This paper proposes the spectrum sensing of DMWC based on a Markov random field (MRF) to select the ideal node, which is compared to the image edge segmentation. The attenuation of the candidate nodes is estimated based on the attenuation of the neighboring nodes that have participated in the DMWC system. Theoretical analysis and numerical simulations show that neighboring attenuation plays an important role in determining the node selection, and selecting the node using MRF can avoid serious transmission attenuation. Furthermore, DMWC can greatly improve recovery performance by using a Markov random field compared with random selection.

Cooperative Bayesian Compressed Spectrum Sensing for Correlated Signals in Cognitive Radio Networks (인지 무선 네트워크에서 상관관계를 갖는 다중 신호를 위한 협력 베이지안 압축 스펙트럼 센싱)

  • Jung, Honggyu;Kim, Kwangyul;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.765-774
    • /
    • 2013
  • In this paper, we present a cooperative compressed spectrum sensing scheme for correlated signals in decentralized wideband cognitive radio networks. Compressed sensing is a signal processing technique that can recover signals which are sampled below the Nyquist rate with high probability, and can solve the necessity of high-speed analog-to-digital converter problem for wideband spectrum sensing. In compressed sensing, one of the main issues is to design recovery algorithms which accurately recover original signals from compressed signals. In this paper, in order to achieve high recovery performance, we consider the multiple measurement vector model which has a sequence of compressed signals, and propose a cooperative sparse Bayesian recovery algorithm which models the temporal correlation of the input signals.

Energy Detector-Aided Spectrum Sensing Using Compressive Sensing (압축감지 기술을 채용한 에너지 검출 스펙트럼 센싱)

  • Lee, Jae-Hyuck;Jeon, Cha-Eul;Hwang, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.67-72
    • /
    • 2011
  • In this paper, we investigate the energy detector to detect a primary user. And employ the compressed sensing method to get the lower sampling rate than Nyquist sampling rate. In more wide bandwidth we using the small samples than Nyquist sampling rate samples to recover original signal. we investigate the performance of energy detector with compressive sensing method under suzuki channel. The performance is investigated by simulation and compared to that of conventional energy detector.

Analysis of Joint Multiband Sensing-Time M-QAM Signal Detection in Cognitive Radios

  • Tariq, Sana;Ghafoor, Abdul;Farooq, Salma Zainab
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.892-899
    • /
    • 2012
  • We analyze a wideband spectrum in a cognitive radio (CR) network by employing the optimal adaptive multiband sensing-time joint detection framework. This framework detects a wideband M-ary quadrature amplitude modulation (M-QAM) primary signal over multiple nonoverlapping narrowband Gaussian channels, using the energy detection technique so as to maximize the throughput in CR networks while limiting interference with the primary network. The signal detection problem is formulated as an optimization problem to maximize the aggregate achievable secondary throughput capacity by jointly optimizing the sensing duration and individual detection thresholds under the overall interference imposed on the primary network. It is shown that the detection problems can be solved as convex optimization problems if certain practical constraints are applied. Simulation results show that the framework under consideration achieves much better performance for M-QAM than for binary phase-shift keying or any real modulation scheme.