• 제목/요약/키워드: wide temperature range

검색결과 1,006건 처리시간 0.034초

제한된 환경에서의 해수냉각펌프용 유도전동기 최대출력 운전을 위한 약계자 제어 (Advanced Field Weakening Control for Maximum Output Power Operation of Seawater Cooling Pump Induction Motor in a Limited Environment)

  • 손영득;서용주;정준형;김장목
    • 전력전자학회논문지
    • /
    • 제18권6호
    • /
    • pp.540-546
    • /
    • 2013
  • The induction motor is used for driving the special equipments such as warship and submarine pump due to robust structure and simple maintenance. Domestic and foreign warships use a wide range of voltages and the DC voltage sources mainly from battery. In the low voltage level, the ${\Delta}$-connection operation of induction motor can be used for the maximum power. However, the temperature of the inverter increases because of the high input current. On the other hand, Y-connection operation of the induction motor does not cause a problem of temperature because of the low input current compared to the ${\Delta}$-connection. But the lack of the supply voltage can not be avoided. Therefore, this paper suggests the algorithm of the optimum field weakening control to extend the operating range of the induction motor with maximum power in a limited thermal and DC voltage condition.

폴리아미드계 열가소성탄성체의 합성, 특성 및 응용 (Synthesis, Properties and Applications of Polyamide Thermoplastic Elastomers)

  • 이강석;최명찬;김성만;장영욱
    • Elastomers and Composites
    • /
    • 제45권3호
    • /
    • pp.156-164
    • /
    • 2010
  • 열가소성 탄성체(TPE)는 사용 온도 범위에서 일반 열경화성 고무와 같은 고무 탄성을 지니면서 용융 가공이 가능한 친환경 소재로써 산업 전반에 걸쳐 활용도가 꾸준히 증가하고 있다. 폴리아미드계 TPE (TPAE)는 하드세그멘트가 엔지니어링 플라스틱인 폴리아미드로 이루어져 있고, 소프트 세그먼트가 유리전이온도가 낮은 폴리에테르로 이루어진 다중 블록 공중합체로써 우수한 기계적 물성, 내화학성, 내열성 및 가공성을 나타낸다. 이러한 폴리아미드계 TPE는 하드 세그먼트와 소프트 세그먼트의 구조 및 상대적 조성에 따라 탄성체에서부터 연질 폴리아미드까지의 광범위한 특성이 발현되며, 또한, 다양한 무기 입자와의 하이브리드화를 통한 기능성 소재로의 활용이 기대되는 소재이다. 본 보문에서는 이러한 TPAE를 합성 할 수 있는 중합 방법과 특성 및 응용 분야에 대해 정리하였다.

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik;Kershner, Ryan J.;Braun, Paul V.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.129-132
    • /
    • 2009
  • Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.

ECAP 강가공에 의한 마그네슘 AZ31합금의 결정립 미세화 및 미세조직 불안정성 (Grain Refinement and Microstructural Instability of an AZ31 Mg Alloy by Severe Plastic Deformation Using ECA Pressing)

  • 김호경;정강;현창용
    • 열처리공학회지
    • /
    • 제17권3호
    • /
    • pp.139-145
    • /
    • 2004
  • Equal channel angular pressing (ECAP) technique had been adapted to the Mg alloy (AZ31) for achieving effective grain refinement through severe deformation. The average grain size of $2.5{\mu}m$ could be obtained after 4 passes. The stability of the ECAPed structure at elevated temperatures was examined by annealing the ECAPed materials over a wide range of temperature between 473 and 748 K. The average activation energy, Q, for static grain growth of 1, 2 and 3 passes was 33.7 kJ/mole (=0.25QL, activation for lattice diffusion). The abnormally low Q value in the lower temperature range may indicate that grain growth occurs in the unrecrystallized microstructure where non-equilibrium grain boundaries containing a large number of extrinsic dislocations exist. The yield stresses of the ECAPed alloys decreased whereas the elongations increased after the ECAP process. These results should be related to the modification of texture for easier slip on basal plane.

고온, 고전압용 SiC 마이크로 히터 설계, 제작 및 특성 (Design fabrication and characteristics of 3C-SiC micro heaters for high temperature, high powers)

  • 정재민;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.113-113
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on $AlN(0.1{\mu}m)/3C-SiC(1.0{\mu}m)$ suspended membranes by surface micro- machining technology. The 3C-SiC and AlN thin films which have wide energy bandgap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3C-SiC RTD (resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR (thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 $ppm/^{\circ}C$ within a temperature range from $25^{\circ}C$ to $50^{\circ}C$ and -1040 $ppm/^{\circ}C$ at $500^{\circ}C$. The micro heater generates the heat about $500^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

  • PDF

Insect Adaptations to Changing Environments - Temperature and Humidity

  • Singh, Tribhuwan;Bhat, Madan Mohan;Khan, Mohammad Ashraf
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제19권1호
    • /
    • pp.155-164
    • /
    • 2009
  • The most important factors in environment that influence the physiology of insects are temperature and humidity. Insects display a remarkable range of adaptations to changing environments and maintain their internal temperature (thermoregulation) and water content within tolerable limits, despite wide fluctuations in their surroundings. Adaptation is a complex and dynamic state that widely differs in species. Surviving under changing environment in insects depends on dispersal, habitat selection, habitat modification, relationship with ice and water, resistance to cold, diapause and developmental rate, sensitivity to environmental signals and syntheses of variety of cryoprotectant molecules. The mulberry silkworm (Bombyx mori) is very delicate and sensitive to environmental fluctuations and unable to survive naturally because of their domestication since ancient times. Thus, the adaptability to environmental conditions in the silkworm is quite different from those of wild insects. Temperature, humidity, air circulation, gases and photoperiod etc. shows a significant interaction in their effect on the physiology of silkworm depending upon the combination of factors and developmental stage affecting growth, development, productivity and quality of silk. An attempt has been made in this article to briefly discuss adaptation in insects with special emphasis on the role of environmental factors and their fluctuations and its significance in the physiology of mulberry silkworm, B. mori.

저온에서 소결된 Ba(Ti0.9Zr0.1)O3 세라믹스의 유전 특성 및 전기 열량 효과 (Dielectric Properties and Electro-Caloric Effects of Low Temperature Sintering Ba(Ti0.9Zr0.1)O3 Ceramics)

  • 류주현
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.13-16
    • /
    • 2017
  • In this study, in order to develop composition ceramics for refrigeration device application, $Ba(Ti_{0.9}Zr_{0.1})O_3$ composition was fabricated using conventional solid-state method. Electrocaloric effect of this ceramic was investigated using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $150^{\circ}C$. Curie temperature of $Ba(Ti_{0.9}Zr_{0.1})O_3$ ceramics showed $80^{\circ}C$. The maximum value of ${\Delta}T=0.12^{\circ}C$ in ambient temperature of $115^{\circ}C$ under 30 kV/cm was appeared. It is concluded that $Ba(Ti_{0.9}Zr_{0.1})O_3$ ceramics can be applied as refrigeration device application.

상변화 물질의 용융과정에 있어서 좌표변환을 이용한 온도분포의 해석적 연구 (The finite difference analysis on temperature distribution by coordinate transformation during melting process of phase-change Material)

  • 김준근;임장순
    • 태양에너지
    • /
    • 제5권2호
    • /
    • pp.77-83
    • /
    • 1985
  • An analysis is performed to investigate the influence of the buoyancy force and the thickness variation of melting layer in the containment that is filled with phase-change Material surrounding a cylindrical heating tube during melting process. The phase-change material is assumed to be initially solid at its phase-change temperature and the remaining solid at any given time is still at the phase-change temperature and neglecting the effect of heat transfer occuring within the solid. At the start of melting process, the thickness of melting layer is assumed to be a stefan-problem and after the starting process, the change of temperature and velocity is calculated using a two dimensional finite difference method. The governing equations for velocity and temperature are solved by a finite difference method which used SIMPLE (Semi Implicit Method Pressure linked Equations) algorithm. Results are presented for a wide range of Granshof number and in accordance with the time increment and it is founded that two dimensional fluid flow occurred by natural convection decreases the velocity of melting process at the bottom of container. The larger the radius of heating tube, the higher heat transfer is occurred in the melting layer.

  • PDF

Ba(Ti1-xZrx)O3 세라믹스의 유전 및 전기열량 특성 (Dielectric and Electrocaloric Properties of Ba(Ti1-xZrx)O3 Ceramics)

  • 라철민;류주현;이지영
    • 한국전기전자재료학회논문지
    • /
    • 제30권4호
    • /
    • pp.223-228
    • /
    • 2017
  • In this study, in order to develop composition ceramics for refrigeration device application at a temperature of less than $90^{\circ}C$, a $Ba(Ti_{1-x}Zr_x)O_3$ composition was fabricated using a conventional solid-state method. Electrocaloric properties of these ceramics were investigated using the characteristics of P-E hysteresis loops in a wide temperature range from room temperature to $150^{\circ}C$. The Curie temperature of $Ba(Ti_{1-x}Zr_x)O_3$ ceramics decreased with the increase of x. The maximum value of ${\Delta}T=0.07^{\circ}C$ in an ambient temperature of $85^{\circ}C$ under 30 kV/cm appeared when x = 0.125. It was concluded that the composition (x = 0.125) ceramics can be used for refrigeration device applications.

Fabrication and Electrical Transport Characteristics of All-Perovskite Oxide DyMnO3/Nb-1.0 wt% Doped SrTiO3 Heterostructures

  • Wang, Wei Tian
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.333-337
    • /
    • 2020
  • Orthorhombic DyMnO3 films are fabricated epitaxially on Nb-1.0 wt%-doped SrTiO3 single crystal substrates using pulsed laser deposition technique. The structure of the deposited DyMnO3 films is studied by X-ray diffraction, and the epitaxial relationship between the film and the substrate is determined. The electrical transport properties reveal the diodelike rectifying behaviors in the all-perovskite oxide junctions over a wide temperature range (100 ~ 340 K). The forward current is exponentially related to the forward bias voltage, and the extracted ideality factors show distinct transport mechanisms in high and low positive regions. The leakage current increases with increasing reverse bias voltage, and the breakdown voltage decreases with decrease temperature, a consequence of tunneling effects because the leakage current at low temperature is larger than that at high temperature. The determined built-in potentials are 0.37 V in the low bias region, and 0.11 V in the high bias region, respectively. The results show the importance of temperature and applied bias in determining the electrical transport characteristics of all-perovskite oxide heterostructures.