• Title/Summary/Keyword: wide field of view

Search Result 268, Processing Time 0.028 seconds

Development of Immersive Augmented Reality interface for Minimally Invasive Surgery (증강현실 기반의 최소침습수술용 인터페이스의 개발)

  • Moon, Jin-Ki;Park, Shin-Suk;Kim, Eugene;Kim, Jin-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

A Study on a Ultra-wide-angle Wireless Digital Electronic Endoscope Modules (초광각 무선 디지털 전자 내시경 모듈에 관한 연구)

  • Shim, Dongha;Kim, Hyung-O;Lee, Bong-Ju;Hong, Seung-Cheol;Lee, Jason;Cha, Jaesang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.570-574
    • /
    • 2014
  • This paper proposes a wireless digital endoscope with a ultra-wide-angle view. Two key components are implemented to demonstrate the feasibility of the proposed endoscope. First, a ultra-wide-angle lens module with the field of view of 144 degree and F-number of 2.2 is designed and manufactured. Second, a wireless module for a high-speed video transfer is implemented using a USB device server and wireless LAN router. The wireless module can directly transfer a streaming video to a computer with the resolution of 1920x1080, frame rate of 30 fps, and data rate of 53.3 Mbps without an internet connection. Since the wireless module supports two USB devices, two spots can be simultaneously observed using the proposed endoscope.

OKAYAMA ASTROPHYSICAL OBSERVATORY WIDE-FIELD CAMERA

  • YANAGISAWA KENSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.109-112
    • /
    • 2005
  • We present the design, expected performance, and current status of the wide field near-infrared camera (OAOWFC) now being developed at Okayama Astrophysical Observatory, NAOJ, NINS. OAOWFC is a near-infrared survey telescope whose effective aperture is 91cm. It works at Y, J, H, and $K_s$ bands and is dedicated to the survey of long period variable stars in the Galactic plane. The field of view is $0.95 {\times} 0.95 deg^2$ which is covered by one HAWAII-2 RG detector of 2048 ${\times}$ 2048 pixels with the pixel size of $18.5 {\mu}m\;{\times}\;18.5{\mu}m$, that results in the sampling pitch of 1.6 arcsec/pixel. OAOWFC can sweep the area of $840 deg^2$ every 3 weeks, attaining a limiting magnitude of 13 in $K_s$ band. It allows us to observe long period variables embedded in the Galactic plane where interstellar extinction is severe in optical.

CFHT: another opportunity for Korean Astronomy?

  • Veillet, Christian
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.125.1-125.1
    • /
    • 2011
  • After a short description of the observatory, this presentation will highlight some of the most recent scientific achievements based on CFHT observations and how they benefit from the current instrumentation and novel observing modes proposed to the CFHT users. We will then move to the mid-term future with the development of new spectroscopic capabilities (visible wide-field FTS or near-IR spectro-polarimetry) and the study of a novel wide-field imager in the visible using Ground-Layer AO to provide unprecedented image quality on a large field of view. As an option for the long-term future, the concept of a next generation 10-m class telescope to replace the current CFHT 3.6-m will be described. An emphasis will be given on how CFHT is slowly morphing into an Asia-Pacific Rim observatory and on the role the Korean community could play in such an endeavor, from immediate access to first-class astronomical data to partnering with other nations in exciting developments.

  • PDF

Time-Multiplexed 3D Display

  • Travis, Adrian R. L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.444-447
    • /
    • 2003
  • A flat panel field sequential 3D display can be made by illuminating a ferroelectric liquid crystal display with scanning illumination passed through a transparent slab embossed with a grating. The concept is expected to enable wide fields of view, sharp discrimination between views, little blurring at depth, and no repetition of views.

  • PDF

Study on an Electrostatic Deflector for Ultra-miniaturized Microcolumn to Realize sub-10 nm Ultra-High Resolution and Wide Field of View (10 nm 이하 초고해상도와 광폭 관측시야를 구현하기 위한 극초소형 마이크로컬럼용 정전형 디플렉터 연구)

  • Lee, Hyung Woo;Lee, Young Bok;Oh, Tae-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.29-37
    • /
    • 2021
  • A 7 nm technology node using extreme ultraviolet lithography with a wavelength of 13.5 nm has been recently developed and applied to the semiconductor manufacturing process. Furthermore, the development of sub-3 nm technology nodes continues to be required. In this study, design factors of an electrostatic deflector for an ultra-miniaturized microcolumn system that can realize an electron wavelength of below 1.23 nm with an acceleration voltage of above 1 eV were investigated using a three-dimensional simulator. Particularly, the optimal design of the electrostatic octupole floating deflector was derived by optimizing the design elements and improving the driving method of the 1 keV low energy ultra-miniaturized microcolumn deflector. As a result, the entire wide field of view greater than 330 ㎛ at a working distance of 4 mm was realized with an ultra-high-resolution electron beam spot smaller than 10 nm. The results of this study are expected to be a basis technology for realizing a wafer-scale multi-array microcolumn system, which is expected to innovatively improve the throughput per unit time, which is the biggest drawback of electron beam lithography.

Wide-field and Deep Survey of Nearby Southern Clusters of Galaxies

  • Rey, Soo-Chang;Sung, Eon-Chang;Jerjen, Helmut;Lisker, Thorsten;Chung, Ae-Ree;Kim, Suk;Lee, Young-Dae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.121-121
    • /
    • 2011
  • Thanks to KMTNet's wide field of view, it is time to implement imaging survey of extensive area of clusters of galaxies in the southern sky with modern instrument. As part of potential long-term survey of nearby (D < 50 Mpc) well-known clusters of galaxies, we propose a wide-field and deep survey of Fornax cluster as a first step of the project. By imaging the 400 square deg region (100 fields) enclosed within the five times virial radius of the Fornax cluster, in three SDSSfilters(g', r', i'), we can provide an unprecedented view of structure of Fornax cluster using sample from giant to dwarf galaxies. We will secure galaxies with brightness comparable to the limiting magnitude (r'=23.1 AB mag) of SDSS. Furthermore, we also request extremely deep (limiting surface brightness of ~ 28 mag $arcsec^{-2}$forr'band) survey for the central region (16 square degree, i.e., four fields) of Fornax cluster. This will allow us to detect the diffuse intracluster light (ICL) that permeates clusters as a valuable tool for studying the hierarchical nature of cluster assembly. In order to complete whole survey, about 285 hr observing time (without overhead) is required. By combining data available at other wavelengths, it will offer unique constraints on the formation of large-scale structure and also provide important clues for theories of galaxy formation and evolution. Our proposed survey will be implemented in the close collaboration with researchers in various countries (Germany, Australia, UK, USA) and ongoing project (e.g., SkyMapper).

  • PDF

Thermal imaging sensor design using 320×240 IRFPA (320×240 적외선 검출기를 이용한 열상센서의 설계)

  • Hong Seok Min;Song In Seob;Kim Chang Woo;Yu Wee Kyung;Kim Hyun Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.423-428
    • /
    • 2004
  • The development of a compact and high performance MWIR thermal imaging sensor based on the SOFRADIR 320${\times}$240 element IRCCD detector is described. The sensor has 20 magnification zoom optics with the maximum 40$^{\circ}$${\times}$30$^{\circ}$ of super wide field of view and 7.6 cycles/mrad of resolving power with the operation of attached micro-scanning system. In order to correct nonuniformities of detector arrays, we have proposed a multi-point correction method using defocusing of the optics and we have acquired the highest quality images. The MRTD of our system shows good results below 0.05K at spatial frequency 1 cycles/mrad at narrow field of view. Experimental data and obtained performances are presented and discussed.

The Design of Wide Angle Mobile Camera Corrected Optical Distortion for Peripheral Area (주변부 상의 왜곡을 보정한 모바일 광각 카메라의 광학적 설계)

  • Kim, Se-Jin;Jeong, Hye-Jung;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.503-507
    • /
    • 2013
  • Purpose: This study was to design wide angle mobile camera corrected optical distortion for peripheral area, which were reduced optical distortion and TV distortion by using 4 aspherical lenses. Methods: The optical design was satisfied with ${\pm}1%$ optical distortion in viewing angle of $95^{\circ}$ and total length of optical system was less than 4.5 mm which was considering a thickness of mobile camera. 1/3.2 inch (5M) CCD sensor was used in the optical system and set design condition to satisfy MTF which was over than 20% in 140 lp/mm. Results: Optimized wide angle mobile camera showed ${\pm}1%$ optical distortion in full field of $95^{\circ}$ viewing angle and TV distortion was 0.46% so that distortion of peripheral area was reduce. MTF showed over than 20% in every field. Ray aberration and astigmatism were small amount so that it showed stable performance. Conclusions: Obtain wider and clearer view which is reduced image distortion of surrounding area via optical method in wide angle mobile camera which has wider view angle than current mobile camera. And it was able to fix a demerit when it occurred via software correction. It is able to apply to study of camera which is related to spectacles.

Off-axis Two-mirror System with Wide Field of View Based on Diffractive Mirror

  • Meng, Qingyu;Dong, Jihong;Wang, Dong;Liang, Wenjing
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.604-613
    • /
    • 2015
  • An unobstructed off-axis two-mirror system is presented in this paper. First a suitable initial configuration is established based on third-order aberration theory. In order to achieve a wide field of view (FOV) with high image quality , the diffractive mirror is adopted in the two-mirror system to increase the optimization freedom and the aberration relationship between diffractive phase coefficients and Zernike coefficients is derived. Furthermore, a complete comparison design example with a focal length of 1200 mm, F-number of 12, and FOV of 40° × 2° is given to verify the aberration correction ability of the diffractive mirror. The system average wavefront error is 0.007 λ (λ=0.6328 μm) developed from 0.061 λ when the system didn’t adopt the diffractive mirror. In this system the phase modulation function of the diffractive mirror is established as an even function of x, so we could obtain a symmetrical imaging quality about the tangential plane, and the symmetric aberration performance also brings considerable convenience to alignment and testing for the system.