• 제목/요약/키워드: whole-cell patch-clamp technique

검색결과 108건 처리시간 0.027초

랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도 (Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons)

  • 한성규;박진봉;류판동
    • 대한수의학회지
    • /
    • 제40권2호
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

흰쥐 교감신경세포에서 Norepinephrine 에 의한 칼슘전류 억제에 미치는 Protein Kinase C 의 역할 (Role of Protein Kinase C on Norepinephrine Induced Inhibition of Calcium Current in Rat Sympathetic Neurons)

  • 구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제11권1호
    • /
    • pp.29-38
    • /
    • 2000
  • 지금까지 각종 신경전달물질의 칼슘통로 억제 효과는 일반적으로 protein kinase 의 관여없이 G-protein mediated, membrane-delimited mechanism$^{1)}$ 으로 설명되어왔다. 그러나 최근들어 protein kinase C (PKC)의 활성화가 몇몇 신경전달물질에 의한 칼슘통로 억제효과를 야기하는 중요한 세포내 기전으로 보고되고 있다 그러므로 본 연구에서는 흰쥐 교감신경뉴론을 대상으로 하여 whole cell patch clamp technique을 사용하여 칼슘전류를 기록하고, 세포밖에 norepinephrine (NE)과 함께 PKC agonist 인 phorbol-12, 13-dibutyrate (PDBu)을 투여하면서 PDBu 전 처치로 인하여 NE 에 의한 칼슘전류 억제에 어떤 변화가 초래되는 지를 분석함으로써, 신경전달물질의 칼슘전류 억제효과시 PKC의 역할을 밝히고자 하였다. PDBu (500 nM) 처치는 칼슘전류의 크기를 증가시켰으며 이는 막전압 의존성을 보여 -10 mV ~ +10 mV 의 저분극 자극시 가장 크게 전류크기가 증가하였다. 또한 PDBu 처치는 tail current 의 deactivation을 느리게 하였다. PDBu 는 NE 에 의하여 활성화되는 pertussis toxin 예민성 G protein pathway를 통한 칼슘전류 억제를 감소시켰다. 비특이적인 protein kinase 길항제인 staurosporine (1 $\mu$M) 을 전처치 하고 PDBu를 투여하면 PDBu의 칼슘전류 크기 증가 효과가 소실되었으며 또한 NE에 의한 칼슘전류 억제를 해제하는 PDBu 의 조절효과도 소실되었다. 이상의 결과로부터 Protein Kinase C 가 활성되면 G protein을 경유하여 나타나는 칼슘전류 억제 효과가 소실된다고 결론지을 수 있다. Protein Kinase C 에 의하여 인산화되는 부위가 G-protein 인지 혹은 칼슘통로인 지에 관한 해답을 얻기 위하여는 추후 연구가 진행되어야 한다.

  • PDF

Potassium Currents in Isolated Deiters' Cells of Guinea Pig

  • Chung, Jong Woo;Nam, Eui Chol;Kim, Won Tae;Youm, Jae Boum;Leem, Chae Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권6호
    • /
    • pp.537-546
    • /
    • 2013
  • Deiters' cells are the supporting cells in organ of Corti and are suggested to play an important role in biochemical and mechanical modulation of outer hair cells. We successfully isolated functionally different $K^+$ currents from Deiters' cells of guinea pig using whole cell patch clamp technique. With high $K^+$ pipette solution, depolarizing step pulses activated strongly outward rectifying currents which were dose-dependently blocked by clofilium, a class III anti-arrhythmic $K^+$ channel blocker. The remaining outward current was transient in time course whereas the clofilium-sensitive outward current showed slow inactivation and delayed rectification. Addition of 5 mM tetraethylammonium (TEA) further blocked the remaining current leaving a very fast inactivating transient outward current. Therefore, at least three different types of $K^+$ current were identified in Deiters' cells, such as fast activating and fast inactivating current, fast activating slow inactivating current, and very fast inactivating transient outward current. Physiological role of them needs to be established.

Spontaneous Electrical Activity in Cerebellar Purkinje Neurons of Postnatal Rats

  • Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.355-366
    • /
    • 1997
  • Although cerebellar Purkinje cells display spontaneous electrical activity in vivo and in slice experiments, the mechanism of the spontaneous activity generation has not been clearly understood. The aim of this study was to investigate whether cerebellar Purkinje cells of postnatal rats generate spontaneous electrical activity without synaptic inputs. Dissociated cerebellar Purkinje cells were used for reducing synaptic inputs in the present study. Cerebellar Purkinje cells with dendrites were dissociated from postnatal rats using enzymatic treatment followed by mechanical trituration. Spontaneous electrical activities were recorded from dissociated cells without any stimulus using whole-cell patch clamp configuration. Two types, spontaneously firing or quiescent, of dissociated Purkinje cells were observed in postnatal rats. Both types of cells were identified as Purkinje cells using immunocytochemical staining technique with anti-calbindin after recording. Spontaneously active cells displayed two patterns of firing, repetitive and burst firings. Two thirds of dissociated Purkinje cells displayed repetitive firing and the rest of them did burst firing under same recording condition. Repetitive firing activities were maintained even after further isolation using either physical or pharmacological techniques. Neither high magnessium solution nor excitatory synaptic blockers, AP-5 and DNQX, block the spontaneous activity. These results demonstrate that spontaneous electrical activity of isolated cerebellar Purkinje cells in postnatal rats is generated by intrinsic membrane properties rather than synaptic inputs.

  • PDF

Involvement of Thromboxane $A_2$ in the Modulation of Pacemaker Activity of Interstitial Cells of Cajal of Mouse Intestine

  • Kim, Jin-Ho;Choe, Soo-Jin;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권1호
    • /
    • pp.25-30
    • /
    • 2008
  • Although many studies show that thromboxane $A_2\;(TXA_2)$ has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of $TXA_2$ on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by $TXA_2$ in ICC with whole cell patch-clamp technique. Externally applied $TXA_2\;(5{\mu}M)$ produced membrane depolarization in current-clamp mode and increased tonic inward pacemaker currents in voltage-clamp mode. The tonic inward currents by $TXA_2$ were inhibited by intracellular application of GDP-${\beta}$-S. The pretreatment of ICC with $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker currents and suppressed the $TXA_2$-induced tonic inward currents. However, chelerythrine or calphostin C, protein kinase C inhibitors, did not block the $TXA_2$-induced effects on pacemaker currents. These results suggest that $TXA_2$ can regulate intestinal motility through the modulation of ICC pacemaker activities. This modulation of pacemaker activities by $TXA_2$ may occur by the activation of G protein and PKC independent pathway via extra and intracellular $Ca^{2+}$ modulation.

Acepromazine inhibits hERG potassium ion channels expressed in human embryonic kidney 293 cells

  • Joo, Young Shin;Lee, Hong Joon;Choi, Jin-Sung;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.75-82
    • /
    • 2017
  • The effects of acepromazine on human ether-$\grave{a}$-go-go-related gene (hERG) potassium channels were investigated using whole-cell voltage-clamp technique in human embryonic kidney (HEK293) cells transfected with hERG. The hERG currents were recorded with or without acepromazine, and the steady-state and peak tail currents were analyzed for the evaluating the drug effects. Acepromazine inhibited the hERG currents in a concentration-dependent manner with an $IC_{50}$ value of $1.5{\mu}M$ and Hill coefficient of 1.1. Acepromazine blocked hERG currents in a voltage-dependent manner between -40 and +10 mV. Before and after application of acepromazine, the half activation potentials of hERG currents changed to hyperpolarizing direction. Acepromazine blocked both the steady-state hERG currents by depolarizing pulse and the peak tail currents by repolarizing pulse; however, the extent of blocking by acepromazine in the repolarizing pulse was more profound than that in the depolarizing pulse, indicating that acepromazine has a high affinity for the open state of the channels, with a relatively lower affinity for the closed state of hERG channels. A fast application of acepromazine during the tail currents inhibited the open state of hERG channels in a concentration-dependent. The steady-state inactivation of hERG currents shifted to the hyperpolarized direction by acepromazine. These results suggest that acepromazine inhibits the hERG channels probably by an open- and inactivated-channel blocking mechanism. Regarding to the fact that the hERG channels are the potential target of drug-induced long QT syndrome, our results suggest that acepromazine can possibly induce a cardiac arrhythmia through the inhibition of hERG channels.

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권1호
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.

The Excitatory Mechanism of Substance P in the Antral Circular Muscle of Guinea Pig Stomach

  • Jun, Jae-Yeoul;Kim, Sung-Joon;Choi, Youn-Baik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.51-59
    • /
    • 1994
  • This study was carried out to elucidate the excitatory mechanisms of Substance P in the antral circular muscle, using isometric contraction recording, conventional microelectrode method and whole-cell patch clamp technique. Substance P produced tonic and phasic contractions in a dose-dependent manner and depolarized membrane potential with increased amplitude of slow waves in muscle strips. Voltage-dependent $Ca^{2+}$ currents were increased by the application of Substance P from a holding potential of -60mV to 50mV in 10mV steps and this effect was blocked by the addition of an antagonist. Also Substance P increased transient and spontaneous oscillatory $K^+$ outward currents. The enhanced outward currents were abolished by apamin in dispersed single cells. These results suggest that the depolarization of membrane potential by Substance P activates voltage-dependent $Ca^{2+}$ channels, which represents an excitatory response in the antral circular muscle and led to an increase in $Ca^{2+}\;activated\;K^+\;currents$.

  • PDF

Effects of Psoralen Derivatives on hKv1.5 Current

  • Eun Jae-Soon;Kim Dae-Keun;Leem Jae-Yoon;Lee Kyung-A;Park Hoon;Kwon Jin;Jung Young-Hoon;Kwak Yong-Geun
    • Biomolecules & Therapeutics
    • /
    • 제14권2호
    • /
    • pp.102-105
    • /
    • 2006
  • We examined the effects of psoralen derivatives on a rapidly activating delayed rectifier $K^+$ channel (hKv1.5) cloned from human heart and stably expressed in $Ltk^-$ cells. Using the whole cell configuration of the patch-clamp technique, we found that the five psoralen derivatives inhibited hKv1.5 current. Especially, 4-(2-Propenyloxy)-7H-furo[3,2-g][1]benzopyran-7-one (compound 5) was more potent than the inhibition of the hKv1.5 current of psoralen. The compound 5 inhibited the hKv1.5 current in a concentration-, time-, and voltage-dependent manner. These results suggest that the compound 5 is an excellent candidate as an antiarrhythmic drug for atrial fibrillation.