• 제목/요약/키워드: whole exome sequencing (WES)

검색결과 17건 처리시간 0.027초

Application of Whole Exome Sequencing to Identify Disease-Causing Variants in Inherited Human Diseases

  • Goh, Gerald;Choi, Murim
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.214-219
    • /
    • 2012
  • The recent advent of next-generation sequencing technologies has dramatically changed the nature of biomedical research. Human genetics is no exception-it has never been easier to interrogate human patient genomes at the nucleotide level to identify disease-associated variants. To further facilitate the efficiency of this approach, whole exome sequencing (WES) was first developed in 2009. Over the past three years, multiple groups have demonstrated the power of WES through robust disease-associated variant discoveries across a diverse spectrum of human diseases. Here, we review the application of WES to different types of inherited human diseases and discuss analytical challenges and possible solutions, with the aim of providing a practical guide for the effective use of this technology.

Coffin-Lowry Syndrome - The First Genetically Confirmed Case in Korea Diagnosed by Whole Exome Sequencing

  • Yoon, Ju Young;Cheon, Chong Kun
    • Journal of Interdisciplinary Genomics
    • /
    • 제2권1호
    • /
    • pp.10-12
    • /
    • 2020
  • Coffin-Lowry syndrome (CLS) is a genetic disorder characterized by intellectual disability, typical facial features, and skeletal abnormalities. But this syndrome shows highly variable clinical manifestations, and can't be diagnosed with conventional chromosome analysis or comparative genomic hybridization, leading to delayed diagnosis. Here we report an 18-year-old boy with CLS diagnosed by whole exome sequencing. Our patient initially presented with developmental delay, facial dysmorphism at the age of 1. At the age of 18, he developed orthopnea due to mitral regurgitation. At the 22 years of age, he was diagnosed as CLS diagnosed by whole exome sequencing. Our case implies that clinical suspicion is important for early diagnosis, and advanced diagnostic tools such as WES should be considered in suspected cases.

Prospective evaluation of the clinical utility of whole-exome sequencing using buccal swabbing for undiagnosed rare diseases

  • Chong Kun Cheon;Yong Beom Shin;Soo-Yeon Kim;Go Hun Seo;Hane Lee;Changwon Keum;Seung Hwan Oh
    • Journal of Genetic Medicine
    • /
    • 제19권2호
    • /
    • pp.76-84
    • /
    • 2022
  • Purpose: Whole-exome sequencing (WES) has been a useful tool for novel gene discovery of various disease categories, further increasing the diagnostic yield. This study aimed to investigate the clinical utility of WES prospectively in undiagnosed genetic diseases. Materials and Methods: WES tests were performed on 110 patients (age range, 0-28 years) with suspected rare genetic diseases. WES tests were performed at a single reference laboratory and the variants reported were reviewed by clinical geneticists, pediatricians, neurologists, and laboratory physicians. Results: The patients' symptoms varied with abnormalities in the head or neck, including facial dysmorphism, being the most common, identified in 85.4% of patients, followed by abnormalities in the nervous system (83.6%). The average number of systems manifesting phenotypic abnormalities per patient was 3.9±1.7. The age at presentation was 2.1±2.7 years old (range, 0-15 years), and the age at WES testing was 6.7±5.3 years (range, 0-28 years). In total, WES test reported 100 pathogenic/likely pathogenic variants or variants of uncertain significance for 79 out of 110 probands (71.8%). Of the 79 patients with positive or inconclusive calls, 55 (50.0%) patients were determined to have good genotype-phenotype correlations after careful review. Further clinical reassessment and family member testing determined 45 (40.9%) patients to have been identified with a molecular diagnosis. Conclusion: This study showed a 40.9% diagnostic yield for WES test for a heterogeneous patient cohort with suspected rare genetic diseases. WES could be the feasible genetic test modality to overcome the diversity and complexity of rare disease diagnostics.

Genetic analysis using whole-exome sequencing in pediatric chronic kidney disease: a single center's experience

  • Lee, Hyeonju;Min, Jeesu;Ahn, Yo Han;Kang, Hee Gyung
    • Childhood Kidney Diseases
    • /
    • 제26권1호
    • /
    • pp.40-45
    • /
    • 2022
  • Purpose: Chronic kidney disease (CKD) has various underlying causes in children. Identification of the underlying causes of CKD is important. Genetic causes comprise a significant proportion of pediatric CKD cases. Methods: In this study, we performed whole-exome sequencing (WES) to identify genetic causes of pediatric CKD. From January to June 2021, WES was performed using samples from pediatric patients with CKD of unclear etiology. Results: Genetic causes were investigated using WES in 37 patients (17 males) with pediatric CKD stages 1 (n=5), 2 (n=7), 3 (n=2), 4 (n=2), and 5 (n=21). The underlying diseases were focal segmental glomerulosclerosis (n=9), congenital anomalies of the kidney and urinary tract including reflux nephropathy (n=8), other glomerulopathies (n=7), unknown etiology (n=6), and others (n=7). WES identified genetic causes of CKD in 12 of the 37 patients (32.4%). Genetic defects were discovered in the COL4A4 (n=2), WT1 (n=2), ACTN4, CEP290, COL4A3, CUBN, GATA3, LAMA5, NUP107, and PAX2 genes. WT1 defects were found in patients whose pathologic diagnosis was membranoproliferative glomerulonephritis, and identification of CUBN defects led to discontinuation of immunosuppressive agents. Genetic diagnosis confirmed the clinical diagnosis of hypoparathyroidism, sensorineural deafness, and renal disease; Alport syndrome; and Joubert syndrome in three of the patients with CKD of unknown etiology (COL4A4 [n=2], CUBN [n=1]). Extrarenal symptoms were considered phenotypic presentations of WT1, PAX2, and CEP290 defects. Conclusions: WES provided a genetic diagnosis that confirmed the clinical diagnosis in a significant proportion (32.4%) of patients with pediatric CKD.

Paired analysis of tumor mutation burden calculated by targeted deep sequencing panel and whole exome sequencing in non-small cell lung cancer

  • Park, Sehhoon;Lee, Chung;Ku, Bo Mi;Kim, Minjae;Park, Woong-Yang;Kim, Nayoung K.D.;Ahn, Myung-Ju
    • BMB Reports
    • /
    • 제54권7호
    • /
    • pp.386-391
    • /
    • 2021
  • Owing to rapid advancements in NGS (next generation sequencing), genomic alteration is now considered an essential predictive biomarkers that impact the treatment decision in many cases of cancer. Among the various predictive biomarkers, tumor mutation burden (TMB) was identified by NGS and was considered to be useful in predicting a clinical response in cancer cases treated by immunotherapy. In this study, we directly compared the lab-developed-test (LDT) results by target sequencing panel, K-MASTER panel v3.0 and whole-exome sequencing (WES) to evaluate the concordance of TMB. As an initial step, the reference materials (n = 3) with known TMB status were used as an exploratory test. To validate and evaluate TMB, we used one hundred samples that were acquired from surgically resected tissues of non-small cell lung cancer (NSCLC) patients. The TMB of each sample was tested by using both LDT and WES methods, which extracted the DNA from samples at the same time. In addition, we evaluated the impact of capture region, which might lead to different values of TMB; the evaluation of capture region was based on the size of NGS and target sequencing panels. In this pilot study, TMB was evaluated by LDT and WES by using duplicated reference samples; the results of TMB showed high concordance rate (R2 = 0.887). This was also reflected in clinical samples (n = 100), which showed R2 of 0.71. The difference between the coding sequence ratio (3.49%) and the ratio of mutations (4.8%) indicated that the LDT panel identified a relatively higher number of mutations. It was feasible to calculate TMB with LDT panel, which can be useful in clinical practice. Furthermore, a customized approach must be developed for calculating TMB, which differs according to cancer types and specific clinical settings.

Comparison of the copy-neutral loss of heterozygosity identified from whole-exome sequencing data using three different tools

  • Lee, Gang-Taik;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.4.1-4.8
    • /
    • 2022
  • Loss of heterozygosity (LOH) is a genomic aberration. In some cases, LOH can be generated without changing the copy number, which is called copy-neutral LOH (CN-LOH). CN-LOH frequently occurs in various human diseases, including cancer. However, the biological and clinical implications of CN-LOH for human diseases have not been well studied. In this study, we compared the performance of CN-LOH determination using three commonly used tools. For an objective comparison, we analyzed CN-LOH profiles from single-nucleotide polymorphism array data from 10 colon adenocarcinoma patients, which were used as the reference for comparison with the CN-LOHs obtained through whole-exome sequencing (WES) data of the same patients using three different analysis tools (FACETS, Nexus, and Sequenza). The majority of the CN-LOHs identified from the WES data were consistent with the reference data. However, some of the CN-LOHs identified from the WES data were not consistent between the three tools, and the consistency with the reference CN-LOH profile was also different. The Jaccard index of the CN-LOHs using FACETS (0.84 ± 0.29; mean value, 0.73) was significantly higher than that of Nexus (0.55 ± 0.29; mean value, 0.50; p = 0.02) or Sequenza (0 ± 0.41; mean value, 0.34; p = 0.04). FACETS showed the highest area under the curve value. Taken together, of the three CN-LOH analysis tools, FACETS showed the best performance in identifying CN-LOHs from The Cancer Genome Atlas colon adenocarcinoma WES data. Our results will be helpful in exploring the biological or clinical implications of CN-LOH for human diseases.

EPG5 유전자 변이가 확인된 Vici 증후군 1례 (Vici Syndrome with Novel Compound Heterozygous Mutations in EPG5)

  • 신제희;이현주;이영목
    • 대한유전성대사질환학회지
    • /
    • 제20권2호
    • /
    • pp.50-54
    • /
    • 2020
  • Vici 증후군은 18q12.3 염색체에 위치하는 EPG5 유전자의 돌연변이로 인해 발생하는 상 염색체 열성 증후군이다. EPG5 유전자는 리소좀 형성에 관여하는 자가 포식 경로의 중요한 조절자를 암호화하므로 이에 대한 돌연변이로 인해 다양한 임상증상을 나타나게 된다. 주요한 임상증상으로는 뇌량 무형성, 백색증, 백내장, 심근 병증, 중증 정신 운동 지체, 발작, 면역 결핍 등이 있으며 다양한 임상증상을 나타내는 만큼 다른 질환들과 임상적으로 구분하기가 어렵다. 저자들은 Vici 증후군으로 진단된 3세 남자 환아의 증례를 보고하고자 한다. 환아는 생후 2개월 경 근긴장 저하와 수유 곤란을 주소로 내원하였으며 이후 Vici 증후군에서 나타나는 특징적인 임상 증상들을 나타내었다. 임상증상들의 감별 진단을 위해 시행한 Whole-exome sequencing (WES) 결과, EPG5 유전자에서 c.2254 C>T (p.Gln752Ter)와 c.5511-5518+2 del TATGCAAAGT 새로운 변이가 이형접합체로 확인되었다. Vici 증후군과 같이 임상적으로 구분이 어려우며 다양한 신체기관에 걸쳐 영향을 미치는 질환의 진단 시에는 Whole-exome sequencing (WES)가 유용하게 사용될 수 있다. 이 증례는 한국에서 확인된 첫 Vici 증후군 case로써 의의가 있다.

Associations for whole-exome sequencing profiling with carcass traits in crossbred pigs

  • Jae Young, Yoo;Sang-Mo, Kim;Dong Hyun, Lee;Gye-Woong, Kim;Jong-Young, Lee
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.595-606
    • /
    • 2022
  • Industrial pig breeding has used the Duroc breed and terminal sires in a three-way crossbred system in Korea. This study identified the gene variation patterns related to carcass quality in crossbred pigs ([Landrace × Yorkshire] × Duroc) using whole-exome sequencing (WES). This study used crossbred pigs and divided them into two groups (first plus grade, n = 5; second grade, n = 5). Genomic DNA samples extracted from the loin muscles of both groups were submitted for WES. A set of validated single-nucleotide polymorphisms (SNPs: n = 102) were also subjected to the Kompetitive allele-specific polymerase chain reaction (KASP) to confirm the WES results in the loin muscles. Based on the WES, SNPs associated with meat quality were found on chromosomes 5, 10, and 15. We identified variations in three of the candidate genes, including kinesin family member 5B (KIF5B), GLI family zinc finger 2 (GLI2), and KIF26B, that were associated with meat color, marbling score, and backfat thickness. These genes were associated with meat quality and the mitogen-activated protein kinase (MAPK) and Hedgehog (Hh) signaling pathways in the crossbred pigs. These results may help clarify the mechanisms underlying high-quality meat in pigs.

De novo mutations in COL4A5 identified by whole exome sequencing in 2 girls with Alport syndrome in Korea

  • Han, Kyoung Hee;Park, Jong Eun;Ki, Chang-Seok
    • Clinical and Experimental Pediatrics
    • /
    • 제62권5호
    • /
    • pp.193-197
    • /
    • 2019
  • Alport syndrome (ATS) is an inherited glomerular disease caused by mutations in one of the type IV collagen novel chains (${\alpha}3$, ${\alpha}4$, and ${\alpha}5$). ATS is characterized by persistent microscopic hematuria that starts during infancy, eventually leading to either progressive nephritis or end-stage renal disease. There are 3 known genetic forms of ATS, namely X-linked ATS, autosomal recessive ATS, and autosomal dominant ATS. About 80% of patients with ATS have X-linked ATS, which is caused by mutations in the type IV collagen ${\alpha}5$ chain gene, COL4A5. Although an 80% mutation detection rate is observed in men with X-linked ATS, some difficulties do exist in the genetic diagnosis of ATS. Most mutations are point mutations without hotspots in the COL4A3, COL4A4, and COL4A5 genes. Further, there are insufficient data on the detection of COL4A3 and COL4A4 mutations for their comparison between patients with autosomal recessive or dominant ATS. Therefore, diagnosis of ATS in female patients with no apparent family history can be challenging. Therefore, in this study, we used whole-exome sequencing (WES) to identify mutations in type IV collagen in 2 girls with glomerular basement membrane structural changes suspected to be associated with ATS; these patients had no relevant family history. Our results revealed de novo c.4688G>A (p.Arg1563Gln) and c.2714G>A (p.Gly905Asp) mutations in COL4A5. Therefore, we suggest that WES is an effective approach to obtain genetic information in ATS, particularly in female patients without a relevant family history, to detect unexpected DNA variations.

차세대 염기서열분석을 이용한 유전성 대사질환의 유전진단 (Genetic Diagnosis of Inherited Metabolic Disorders using Next-Generation Sequencing)

  • 기창석
    • 대한유전성대사질환학회지
    • /
    • 제23권2호
    • /
    • pp.1-7
    • /
    • 2023
  • 유전성 대사질환은 생화학적 대사 이상에 의해 발생하는 질환 군으로, 매우 다양할 뿐만 아니라 임상 양상이 서로 겹칠 수 있어 진단에 어려움을 겪을 수 있다. 과거에는 유전성 대사질환의 원인이 될 수 있는 유전자를 선정한 후 한 개씩 분석하는 방식으로 유전자 검사를 시행했다. 하지만, 최근에는 차세대 염기서열분석 기술이 발전함에 따라 유전성 대사질환과 관련된 수백-수천개의 유전자를 한꺼번에 분석하거나, 인간의 모든 유전자를 포함하는 엑솜/게놈 분석을 시행한 후 원인 유전자를 찾는 방식으로 유전 진단의 패러다임이 바뀌고 있다. 본 종설에서는 차세대 염기서열분석을 이용한 유전성 대사질환의 유전 진단 방법과 진단율 및 주의점 등을 살펴보고자 한다.

  • PDF