Browse > Article
http://dx.doi.org/10.3345/kjp.2018.06772

De novo mutations in COL4A5 identified by whole exome sequencing in 2 girls with Alport syndrome in Korea  

Han, Kyoung Hee (Department of Pediatrics, Jeju National University School of Medicine)
Park, Jong Eun (Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
Ki, Chang-Seok (Green Cross Genome)
Publication Information
Clinical and Experimental Pediatrics / v.62, no.5, 2019 , pp. 193-197 More about this Journal
Abstract
Alport syndrome (ATS) is an inherited glomerular disease caused by mutations in one of the type IV collagen novel chains (${\alpha}3$, ${\alpha}4$, and ${\alpha}5$). ATS is characterized by persistent microscopic hematuria that starts during infancy, eventually leading to either progressive nephritis or end-stage renal disease. There are 3 known genetic forms of ATS, namely X-linked ATS, autosomal recessive ATS, and autosomal dominant ATS. About 80% of patients with ATS have X-linked ATS, which is caused by mutations in the type IV collagen ${\alpha}5$ chain gene, COL4A5. Although an 80% mutation detection rate is observed in men with X-linked ATS, some difficulties do exist in the genetic diagnosis of ATS. Most mutations are point mutations without hotspots in the COL4A3, COL4A4, and COL4A5 genes. Further, there are insufficient data on the detection of COL4A3 and COL4A4 mutations for their comparison between patients with autosomal recessive or dominant ATS. Therefore, diagnosis of ATS in female patients with no apparent family history can be challenging. Therefore, in this study, we used whole-exome sequencing (WES) to identify mutations in type IV collagen in 2 girls with glomerular basement membrane structural changes suspected to be associated with ATS; these patients had no relevant family history. Our results revealed de novo c.4688G>A (p.Arg1563Gln) and c.2714G>A (p.Gly905Asp) mutations in COL4A5. Therefore, we suggest that WES is an effective approach to obtain genetic information in ATS, particularly in female patients without a relevant family history, to detect unexpected DNA variations.
Keywords
Alport syndrome; Whole exome sequencing; Child; Collagen type IV;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kashtan CE, Gubler MC. Inherited glomerular diseases: type IV collagen disorders. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, editors. Pediatric nephrology. 6th ed. Springer, 2009. p.621-8.
2 Weber S, Strasser K, Rath S, Kittke A, Beicht S, Alberer M, et al. Identification of 47 novel mutations in patients with Alport syndrome and thin basement membrane nephropathy. Pediatr Nephrol 2016;31:941-55.   DOI
3 Meleg-Smith S, Magliato S, Cheles M, Garola RE, Kashtan CE. Xlinked Alport syndrome in females. Hum Pathol 1998;29:404-8.   DOI
4 Cheong HI, Park HW, Ha IS, Choi Y. Mutational analysis of COL4A5 gene in Korean Alport syndrome. Pediatr Nephrol 2000;14:117-21.   DOI
5 Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013;98:236-8.   DOI
6 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.   DOI
7 Artuso R, Fallerini C, Dosa L, Scionti F, Clementi M, Garosi G, et al. Advances in Alport syndrome diagnosis using next-generation sequencing. Eur J Hum Genet 2012;20:50-7.   DOI
8 Beicht S, Strobl-Wildemann G, Rath S, Wachter O, Alberer M, Kaminsky E, et al. Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome. Gene 2013;526:474-7.   DOI
9 Chiereghin C, Robusto M, Mastrangelo A, Castorina P, Montini G, Giani M, et al. Alport syndrome cold cases: Missing mutations identified by exome sequencing and functional analysis. PLoS One 2017;12:e0178630.   DOI
10 Zhou J, Gregory MC, Hertz JM, Barker DF, Atkin C, Spencer ES, et al. Mutations in the codon for a conserved arginine-1563 in the COL4A5 collagen gene in Alport syndrome. Kidney Int 1993;43:722-9.   DOI
11 Wang F, Zhao D, Ding J, Zhang H, Zhang Y, Yu L, et al. Skin biopsy is a practical approach for the clinical diagnosis and molecular genetic analysis of X-linked Alport's syndrome. J Mol Diagn 2012;14:586-93.   DOI
12 Hudson BG. The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol 2004;15:2514-27.   DOI
13 Savige J, Sheth S, Leys A, Nicholson A, Mack HG, Colville D. Ocular features in Alport syndrome: pathogenesis and clinical significance. Clin J Am Soc Nephrol 2015;10:703-9.   DOI
14 Wang YF, Ding J, Wang F, Bu DF. Effect of glycine substitutions on alpha5(IV) chain structure and structure-phenotype correlations in Alport syndrome. Biochem Biophys Res Commun 2004;316:1143-9.   DOI
15 Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M. Meta-analysis of genotype-phenotype correlation in X-linked Alport syndrome: impact on clinical counselling. Nephrol Dial Transplant 2002;17:1218-27.   DOI