• Title/Summary/Keyword: white rot

Search Result 438, Processing Time 0.025 seconds

Effect of Crop Rotation Cultivation on the Suppression of Garlic White Rot Caused by Sclerotium cepivorum (전작물 재배에 의한 마늘 흑색썩음균핵병 억제효과)

  • Han, Eun-Jung;Choi, Jae-Pil;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Seok-Cheol;Yoon, Seok-Han
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2015
  • This study was conducted to evaluate the effect of crop rotation cultivation on the suppression of garlic white rot caused by Sclerotium cepivorum in the mini plot ($2^*1^*$ 0.5 m). Six crops, soybean, sesame, mung bean, squash, crotalaria and spring onion, were previously transplanted in the mini-plots infested with S. cepivorum before garlics were planted. After cultivation of the previous crops, garlic was sown in the mini-plot. Non-cultivation plots and non-infested plots with white rot pathogen were used as control. The effect of crop rotation cultivation on the suppression of garlic white rot was evaluated by investigating comparatively the disease incidence (the percentage of infected plants) and yields. As a results, infection rate of garlic white rot was recorded lower in the non-infested plot, crotalaria and soybean cultivation than in the plot of the other crop cultivation. Especially when squash was previously cultivated and garlics were planted in 2013, infection rate of garlic white was recorded the highest score. In 2014, the infection rate of garlic white were low in the garlic on soybean, crotalaria and spring onion treatment whereas it was high in squash treatment, as well. In 2013, garlic yield was the highest in no inoculation plot, followed by crotalaria, soybean, no crop cultivation, sesami, mungbean, squash cultivation plot. In 2014, the yield in the plot of crotalaria and soybean was much higher than that in no inoculation plot. Based on above-described results, it is considered that soybean-garlic and crotalaria-garlic cultivation system can be good crop rotation systems to control garlic white rot.

Biodegration of Pentachlorophenol by White Rot Fungi under Ligniolytic and Nonligninolytic Conditions

  • Ryu, Won-Ryul;Shim, Seong-Hoon;Jang, Moon-Yup;Heon, Yeong-Joong;Oh, Kwang-Keun;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.211-214
    • /
    • 2000
  • The roles of lignin peroxidase, manganese peroxidase, and laccase were inverstigated in the biodegration of pentachlorphenol (PCP) by several which rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains, P. chrysosporium, Trametes sp. and of pentachlorophenol from cultures of wild type strains, P. cheysocporium, Trametes sp. and Pleurotus ap., was observed. The activities of mangnese peroxidase and laccase was detected in Trametes sp. and pleurotus sp. cultures. However, the activities showed that PCP was degraded under ligninolytic as well as nonligninoytic condicationg that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.

  • PDF

Various Cultural Factors Associated with Disease Development of Garlic White Rot Caused by Two Species of Sclerotium (마늘 흑색썩음균핵병 발생에 관여하는 여러가지 경종적 요인)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Shim, Hong-Sik;Kim, Tack-Soo;Yeh, Wan-Hae;Cho, Weon-Dae;Choi, In-Hu;Lee, Seong-Chan;Ko, Sug-Ju;Lee, Yong-Hwan;Lee, Chan-Jung
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2005
  • This study was conducted to investigate the control possibility of garlic white rot causing severe yield losses of Allium species and cultivars using cultural practices such as optimal sowing date and burial depth, and lime application. Inoculum density in infested field soil was investigated at different soil depth, and that on the diseased plant debris was done. Inoculum density and recovery ratio of white rot pathogen of garlic was highly different between two species of Sclerotium cepivorum forming comparatively small sclerotia and Sclerotium sp. forming comparatively large ones. It was confirmed that S. cepivorum formed more sclerotia on bulbs of garlic than S. sp., and sclerotial recovery of S. cepivorum was higher than that of S. sp. Inoculum density of white rot pathogen in the infested field at garlic seeding period ranged from one to thirteen sclerotia per 30 g soil. Inoculum density of white rot pathogen decreased remarkably with increasing soil depth and above 95% of sclerotia were distributed within 5 cm of soil depth. Disease severity of white rot was higher on slightly planted garlics than deeply-planted ones. Garlic seed bulbs infected by white rot pathogens were confirmed to be one of main inoculum sources of white rot in the field and the disease incidences caused by garlic seed transmission showed big differences among garlic varieties. When nine garlic varieties harvested from infested plots were sown in the field, highly susceptible varieties, ‘Wando’, ‘Daeseo’, ‘Namdo’ and ‘Kodang’ showed high disease incidences, whereas other five varieties were not infected at all. It was confirmed that white rot occurred higher on early-sown garlics, before middle October, than on late-sown ones, after late October. Meanwhile, increasing application rate of lime ranged from 100 to 300 g reduced disease severity of white rot.

Biological Control of White Rot in Garlic Using Burkholderia pyrrocinia CAB08106-4 (Burkholderia pyrrocinia CAB08106-4 균주를 이용한 마늘 흑색썩음균핵병의 생물학적 방제)

  • Han, Kwang Seop;Kim, Buyng Ryun;Kim, Jong Tae;Hahm, Soo Sang;Hong, Ki Heung;Chung, Chang Kook;Nam, Yun Gyu;Yu, Seung Hun;Choi, Jae Eul
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2013
  • White rot caused by Sclerotium cepivorum was reported to be severe soil-born disease on garlic. Disease progress of white rot of garlic (Allium sativum L.) was investigated during the growing season of 2009 to 2011 at Taean and Seosan areas. The white rot disease on bulb began to occur from late April and peaked in late May. The antifungal bacteria, Burkholderia pyrrocinia CAB08106-4 was tested in field bioassay for suppression of white rot disease. As a result of the nucleotide sequence of the gene 16S rRNA, CAB008106-4 strain used in this study has been identified as B. pyrrocinia. B. pyrrocinia CAB080106-4 isolate suppressed the white rot with 69.6% control efficacy in field test. These results suggested that B. pyrrocinia CAB08106-4 isolate could be an effective biological control agent against white rot of garlic.

Selection of White Rot Fungi for Biodegradation of Polychlorinated Biphenyl, and Analysis of Its Biodegradation Rate (폴리염화비페닐류의 생분해 우수 백색부후균 선발 및 분해율 분석)

  • Hong, Chang-Young;Gwak, Ki-Seob;Lee, Su-Yeon;Kim, Seon-Hong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.568-578
    • /
    • 2010
  • In this study, the possibility of biodegradation of polychlorinated biphenyls (PCBs) by various white rot fungi was evaluated, and outstanding white rot fungi for the degradation of PCBs were selected. Seven white rot fungi were used to degrade Aroclor 1254 and 1260, which are widely considered to be toxic and difficult to degrade. And the degradation rates of Aroclors by selected white rot fungi were performed by GC analysis. Through the resistance test of white rot fungi on different concentrations of PCBs, the inhibition of mycelial growth of Cystidodontia isubellina was much less than that of others, and this fungus grew faster than others, relatively. Based on this result, it was considered that C. isubellina was selected as degrading fungus for Aroclors. As a result of biodegradation rate of Aroclors by Cystidodontia isubellina, the degradation rate of Arolor 1254 was reached to 57.57% in 13 days, which showed very high degradation rate. Also the degradation rate of Aroclor 1260 by C. isubellina had a tendency of increasing along with increasing incubation day. Maximal degradation rate of Aroclor 1260 was 49.43% at 13 days. Based on this results, it indicated that in comparison with a previous study, high degradation rate was obtained by C. isubellina.

Isolation and Characterization of White Rot Fungi for Decolorization of Several Synthetic Dyes (염료의 색도 제거능력이 우수한 백색부후균 분리 및 특성연구)

  • 오광근;김현수;조무환;채영규;전영중
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.500-508
    • /
    • 1999
  • Several white-rot fungi collected from the mountains of Korea were evaluated for their ability to decolorize azo, polymeric, and reactive dyes. Strains CJ-105, CJ-212 and CJ-315, identified as Trametes sp., Pleurotus sp. and Fomes sp., respectively, showed higher potential for decolorization of those dyes in either solid or liquid media. For Trametes sp. CJ-105, 100ppm of Remazol Brilliant blue R and 500ppm of Acid Red 264 were completely decolorized after 2 days under liquid culture. The dominating ligninolytic enzyme existing in the culture broth was laccase (E.C. 1.10.3.2). Also, Pleurotus sp. CJ-212 and Fomes sp. CJ-315 showed similar patterns in decolorization of Remazol Brilliant Blue R and Acid Red 264. The extent of decolorization of the dyes in liquid culture was found to be proportional to the activities of the ligninolytic of decolorization of the dyes in liquid culture was found to be proportional to the activities of the ligninolytic enzymes produced by each strain. In addition to that Trametes sp. CJ-105 was highly effective in degradation of polycyclic aromatic hydrocarbons and pentachlorophenol by the activity of the ligninolytic enzymes produced. In this study, we found that white-rot fungi, Trametes sp. CJ-105(KFCC 10941), Pleurotus sp. CJ-212(KFCC 10943) and Fomes sp. CJ-315(KFCC 10942), were effective in decolorizing a wide range of structurally different synthetic dyes, as well as some chemical compounds which are known to be hardly degradable.

  • PDF

Formation of Teleomorph of the White Root Rot Fungus, Rosellinia necatrix, and the Potential Role of its Ascospores as Inocula

  • Lee, J.S.;Han, K.S.;Park, J.H.;Park, Y.M.;Naoyuki, Matsumoto
    • The Plant Pathology Journal
    • /
    • v.19 no.3
    • /
    • pp.152-158
    • /
    • 2003
  • Stromata of the white root rot fungus, Rosellinia necatrix, were produced on diseased roots although they were reported to develop rarely in nature. Forty-two (42) out of 47 samples produced synnemata while 23 developed stromata. Forty-seven (47) isolates obtained from diseased root samples were divided into 24 mycelium compatibility groups (MCGs). Sixteen (16) out of 24 MCGs produced stromata. Single ascospore isolates from 10 stroma samples produced dsRNA-containing isolates from diseased tissue beneath stromata. The frequency of synnema production on axenic culture varied among isolates with different origin. The dsRNA was not transmitted vertically to the ascospore offspring despite the infection of various dsRNA in the parental isolates. The dsRNA was absent in 35 ascospore isolates in two stroma samples that originated from the isolates, in which dsRNA was not eliminated by hyphal tip isolation. Consequently, sexual reproduction in the white root rot fungus was suggested to produce propagules as a new infection source and to have the function to eliminate infectious factors such as mycoviruses.

Incidence of Diseases in Codonopsis lanceolata with Different Cultivation Method (재배양식에 따른 더덕 병해 발생양상)

  • 김주희;최정식
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.676-681
    • /
    • 1998
  • Disease incidence of Codonopsis lanceolata was surveyed at the major cultivating fields in Chonbuk province in 1996 to 1997. The main diseases of Codonopsis lanceolata were ovserved as leaf spot caused by Septoria codonopsis, anthracnose by Glomerella cingulata, brown leaf spot by Cercospora sp., rust by Coleosporium koreanum, powdery mildew by Erysiphe sp., Fusarium wilt caused by Fusarium oxyporum, and white root rot by Sclerotium rolfsii. Anthracnose, leaf spot and brown leaf spot occurred severely on leaves from early July to late August. They were caused early fallen leaves. Fusarium wilt and white root rot occurred severely on stem and below the soil line in late August. They resulted in withering to death or chlorosis and fallen of leaves. Disease incidence of Codonopsis lanceolata was also substantially different in occurrence with a method of cultivation in late growth stage. Fusarium wilt and white root rot were more severe with a method of no support cultivation than those with a method of support cultivation with a stick. Fusarium wilt occurred 48.8% in a method of no support cultivation but 3.1% in a method of support cultivation with a stick. And white root rot occurred 18.9% in a method of no support cultivation but 0.3% in a method of no support cultivation with a stick. Thus, it proved that soil-borne diseases could be controlled support cultivation with a stick.

  • PDF

Purification and Characterization of Laccase from the White Rot Fungus Trametes versicolor

  • Han Moon-Jeong;Choi Hyoung-Tae;Song Hong-Gyu
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.555-560
    • /
    • 2005
  • Laccase is one of the ligninolytic enzymes of white rot fungus Trametes versicolor 951022, a strain first isolated in Korea. This laccase was purified 209-fold from culture fluid with a yield of $6.2\%$ using ethanol precipitation, DEAE-Sepharose, Phenyl-Sepharose, and Sephadex G-100 chromatography. T. versicolor 951022 excretes a single monomeric laccase showing a high specific activity of 91,443 U/mg for 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as a substrate. The enzyme has a molecular mass of approximately 97 kDa as determined by SDS-PAGE, which is larger than those of other laccases reported. It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 3.0 and a temperature of $50^{\circ}C$. The $K_m$ value of the enzyme for substrate ABTS is $12.8{\mu}M$ and its corresponding $V_{max}$ value is 8125.4 U/mg. The specific activity and substrate affinity of this laccase are higher than those of other white rot fungi, therefore, it may be potentially useful for industrial purposes.

Reducing Fungicidal Spray Frequency for Major Apple Diseases by Increasing the Spray Interval from 15 to 25 days

  • Lee, Dong-Hyuck;Shin, Ho-Cheol;Cho, Rae-Hong;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.270-279
    • /
    • 2009
  • During the course of a study to develop a spraying program at 15-day spray intervals, two important findings were identified allowing for further reduction of spray frequency by increasing the spray interval. In evaluating the contribution of fungicides from a 15-day spray interval program, control of white rot, which is of prime importance in Korea, was not affected, in spite of the extended spray interval caused by omitting the fungicides during the season. In another experiment assessing the duration of the protective activities of several key fungicides used in the 15-day spray interval program, infection control was maintained for almost 30 days for some fungicide. Based on these two findings, a basic spraying program with a 25-day spray interval was developed. This program was modified for four successive years to improve the control efficacy against bitter rot and Marssonina blotch, which sometimes causes as much damage as white rot.