• Title/Summary/Keyword: white organic light-emitting device

Search Result 83, Processing Time 0.028 seconds

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF

White Tandem Organic Light-Emitting Diodes Using Red and Blue Fluorescent Materials (적색과 청색 형광 물질을 사용한 백색 적층 OLED)

  • Park, Chan-Suk;Kong, Do-Hun;Kang, Ju-Hyun;Yun, Sung-Hyuk;Ju, Sung-Hoo
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • We studied white tandem organic light-emitting diodes using red and blue fluorescent materials. White 2 units tandem OLEDs were fabricated using $Alq_3$:Rubrene (3 vol.% 5 nm) and SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). The device with $Alq_3$ : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) showed yellowish white emission with a Commission Internationale de l'Eclairage (CIE) coordinates of (0.442, 0.473) at $1,000cd/m^2$, and variation of CIE coordinates was low with ($0.44{\pm}0.002$, $0.472{\pm}0.001$) from 500 to $3,000cd/m^2$. White 3 units tandem OLEDs were fabricated by additory stacking the blue or white layer as EML. CIE coordinates of 3 units tandem OLEDs with stacked blue and white layer was low variation of ($0.293{\pm}0.008$, $0.36{\pm}0.005$) and ($0.412{\pm}0.002$, $0.423{\pm}0.001$) from 500 to $3,000cd/m^2$, respectively. Our findings suggest that stacked OLED was possible to controlling CIE coordinates and producing excellent color stability.

Emission Properties of EL Device Fabricated by LB Method (LB법으로 제작한 백색 EL소자의 발광특성)

  • 김주승;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.351-354
    • /
    • 2001
  • We fabricated organic electroluminescent(EL) devices with mixed emitting layer of poly (N- vinylcarbazole) ( PVK) , 2,5-bis (5-tert-butyl -2- benzoxaBoly) thiophene ( BBOT) , N,N-diphenyl-N,N- (3-methyphenyl) -1,1-biphenyl-4, 4-thiamine(TPD) and poly(3-hexylthiophene) (P3HT) deposited by LB(Langumuir-Boldgett) method. From the AFM(atomic force microscope) images, the monolayer containing 30% of AA(arachidic acid) showed a roughness value of 28$\AA$. In the voltage-current characteristics of ITO/Emitting layer/BBOT/LiF/A1 devices, current density much smaller than that of the spin-coated devices having a same thickness.

  • PDF

Electrical and Optical Properties of Organic Light Emission Devices using Selective Doping in a Single Host (단일 호스트를 이용하여 선택적으로 도핑된 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.124-127
    • /
    • 2010
  • We have fabricated organic white light emitting device by two colors from yellow fluorescence material (5,6,11,12)-Tetraphenylnaphthacene(Rubrene) and blue phosphorescent material (iridum-bis(4,6-difluorophenylpyridinato-N,C2)-picolinate(FIrpic). The threshold voltage is 5.3 V, and the brightness reaches 1000 cd/$m^2$ at 11 V, 14.5 mA/$m^2$. The color of the light corresponds to a CIE coordinate of (0.30, 0.38). The highest efficiency of the device can reach 9.5 cd/A or 5.5 lm/W at 6 V, 0.1 mA/$m^2$.

Conduction properties of phosphorescent emitting layers and their application to optimizing white OLEDs

  • Baek, Heume-Il;Noh, Seung-Uk;Lee, Hyun-Koo;Suman, C.K.;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1055-1055
    • /
    • 2009
  • The mobility of charge carriers has been investigated in the pristine and phosphorescent materials doped host materials using time-of-flight photoconductivity technique. The field and temperature dependences of the mobility were analyzed with the Gaussian disorder model. Based on these results, we optimized white organic light emitting diodes (WOLEDs) consisting of multi-emitting layers doped with phosphorescent and fluorescent dopants. Especially, we studied the effect of each emitter position and an interlayer on the device characteristics of WOLEDs.

  • PDF

Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings (OLED 조명을 위한 Yellow, Orange, Red 인광 재료)

  • Jung, Hyocheol;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-250
    • /
    • 2015
  • Organic light-emitting diode (OLED) research field has received great attention from academic and industrial circles. Recently, The technical feature of OLEDs is more and more attractive in the lighting market, including area emission characteristics different from other existing light sources. Features are environmentally friendly and efficient use of energy, large area, ultra-light weight, and ultrathin shape, etc. Furthermore, OLED light became the mainstream of next-generation lighting to replace the light emitting diode (LED) fluorescent light. This article summarizes phosphorescent emitting materials that have been applied to white OLEDs. In particular, the chemical structures and device performances of the important yellow, orange, and red phosphorescent emitting materials is discussed. Systematic classification and understanding of the phosphorescent materials can aid the development of new light-emitting materials.

Two Wavelength OLED with the Stacked GDI602(691)/GDI602(Rubrene) Fluorescent Layer (Stacked GDI602(691)/GDI602(Rubrene) 형광층을 갖는 2-파장 유기발광소자)

  • Jang, Ji-Geun;Chang, Ho-Jung;Oh, Myung-Hwan;Kang, Jung-Won;Lee, Jun-Young;Gong, Myoung-Seon;Lee, Young-Kwan;Kim, Hee-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.198-202
    • /
    • 2007
  • A new organic light emitting device(OLED) with two peak wavelength(blue and yellow) emission was fabricated using the selective doping in a single fluorescent host , and its electrical and optical characteristics were investigated. The fabricated device showed the luminance and efficiency of 1600 $Cd/m^2$ and 2.4 Im/W under the applied voltage of 10V, respectively. And its electroluminescent spectra had two peak wavelengths of 470nm and 560nm emitting bluish white light. The OLED with dual wavelength emission in this experiment is likely to be developed as a white OLED with simpler fluorescent system than conventional devices.

Efficient white organic light-emitting diodes with a doped hole-blocking layer

  • Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.780-783
    • /
    • 2002
  • We report very efficient white OLEDs consisting of a blue-emitting 4,4'bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (${\alpha}$-NPD), a hole-blocking layer of 2,9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline (BCP) doped with red fluorescent dye of 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro- 1H, 5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2), and green-emitting tris(8-hydroxyquinoline) aluminum ($Alq_3$). The device with the structure of ITO/${\alpha}$-NPD (50 nm)/BCP:DCM2 (0.8 %, 4 nm)/$Alq_3$ (50 nm)/LiF (0.5 nm)/Al shows a white emission with the CIE coordinates (0.329, 0.333). The maximum luminance of 20,800 cd/$m^2$ is obtained at 15.4 V. The power efficiency is 2.6lm/W and the external quantum efficiency is 2.1 % at a luminance of 100 cd/$m^2$ at the bias voltage of 6 V.

  • PDF

A Study on the Various Organic Electroluminescent Devices Using Lanthanide Chelate Metal Complexes (란탄계 금속 착화합물을 이용한 다양한 유기 전기 발광 소자의 연구)

  • 표상우;김윤명;이한성;김정수;이승희;김영관
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.437-443
    • /
    • 2000
  • In this study several lanthanide complexes such as Eu(TTA)$_3$(Phen), Tb(ACAC)$_3$-(Cl-Phen) were synthesized and the white-light electroluminescence(EL) characteristics of their thin films were investigated where the devices having structures of anode/TPD/Tb(ACAC)$_3$(Cl-Phen)/Eu(TTA)$_3$(Phen)/Alq$_3$or Bebq$_2$/cathode and the low work function metal alloy such as Li:Al was used as the electron injecting electrode(cathode). Device structure of glass substrate/ITO/TPD(30nm)/Tb(ACAC)$_3$(Phen)(30nm)/Eu(TTA)$_3$(Phen)(6nm)/DCM doped Alq$_3$(10nm)/Alq$_3$(20nm)/Li:Al(100nm) was also fabricated and their EL characteristics were investigated where Eu(TTA)$_3$(Phen) and DCM doped Alq$_3$were used as red light-emitting materials. It was found that the turn-on voltage of the device with non-doped Alq$_3$was lower than that of the devices with doped Alq$_3$and the blue and red light emission peaks due to TPD and Eu(TTA)$_3$(Phen) with non-doped Alq$_3$were lower than those with DCM doped Alq$_3$Details on the white-light-emitting characteristics of these device structures were explained by the energy and diagrams of various materials used in these structure where the energy levels of new materials such as ionization potential(IP) and electron affinity(EA) were measured by cyclic voltametric method.

  • PDF

Excimer-Based White Phosphorescent OLEDs with High Efficiency

  • Yang, Xiaohui;Wang, Zixing;Madakuni, Sijesh;Li, Jian;Jabbour, Ghassan E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1520-1521
    • /
    • 2008
  • There are several ways to demonstrate white organic light emitting diodes (OLEDs) for displays and solid state lighting applications. Among these approaches are the stacked three primary or two complementary colors light-emitting layers, multiple-doped emissive layer, and excimer and exciplex emission [1-10]. We report on white phosphorescent excimer devices by using two light emitting materials based on platinum complexes. These devices showed a peak EQE of 15.7%, with an EQE of 14.5% (17 lm/W) at $500\;cd/m^2$, and a noticeable improvement in both the CIE coordinates (0.381, 0.401) and CRI (81). Devices with the structure ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 12% FPt (10 nm) /26 mCPy: 2% Pt-4 (15 nm)/BCP (40 nm)/CsF/Al [device 1], ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4 (15 nm)/26 mCPy: 12% FPt (10 nm)/BCP (40 nm)/CsF/Al [device 2], and ITO/PEDOT:PSS/TCTA (30 nm)/26 mCPy: 2% Pt-4: 12% FPt (25 nm)/BCP (40 nm)/CsF/Al [device 3] were fabricated. In these cases, the emissive layer was either the double-layer of 26 mCPy:12% FPt and 15 nm 26 mCPy: 2% Pt-4, or the single layer of 26mCPy with simultaneous doping of Pt-4 and FPt. Device characterization indicates that the CIE coordinates/CRI of device 2 were (0.341, 0.394)/75, (0.295, 0.365)/70 at 5 V and 7 V, respectively. Significant change in EL spectra with the drive voltage was observed for device 2 indicating a shift in the carrier recombination zone, while relatively stable EL spectra was observed for device 1. This indicates a better charge trapping in Pt-4 doped layers [10]. On the other hand, device 3 having a single light-emitting layer (doped simultaneously) emitted a board spectrum combining emission from the Pt-4 monomer and FPt excimer. Moreover, excellent color stability independent of the drive voltage was observed in this case. The CIE coordinates/CRI at 4 V ($40\;cd/m^2$) and 7 V ($7100\;cd/m^2$) were (0.441, 0.421)/83 and (0.440, 0.427)/81, respectively. A balance in the EL spectra can be further obtained by lowering the doping ratio of FPt. In this regard, devices with FPt concentration of 8% (denoted as device 4) were fabricated and characterized. A shift in the CIE coordinates of device 4 from (0.441, 0.421) to (0.382, 0.401) was observed due to an increase in the emission intensity ratio of Pt-4 monomer to FPt excimer. It is worth noting that the CRI values remained above 80 for such device structure. Moreover, a noticeable stability in the EL spectra with respect to changing bias voltage was measured indicating a uniform region for exciton formation. A summary of device characteristics for all cases discussed above is shown in table 1. The forward light output in each case is approximately $500\;cd/m^2$. Other parameters listed are driving voltage (Bias), current density (J), external quantum efficiency (EQE), power efficiency (P.E.), luminous efficiency (cd/A), and CIE coordinates. To conclude, a highly efficient white phosphorescent excimer-based OLEDs made with two light-emitting platinum complexes and having a simple structure showed improved EL characteristics and color properties. The EQE of these devices at $500\;cd/m^2$ is 14.5% with a corresponding power efficiency of 17 lm/W, CIE coordinates of (0.382, 0.401), and CRI of 81.

  • PDF