• Title/Summary/Keyword: white light emitting diodes

Search Result 201, Processing Time 0.03 seconds

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

White Light -Emitting Diodes with Multi-Shell Quantum Dots

  • Kim, Kyung-Nam;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.92-92
    • /
    • 2010
  • Replacing the existing illumination with solid-state lighting devices, such as light-emitting diodes (LEDs) are expected to reduce energy consumption and environmental pollution as they provide better efficiency and longer lifetimes. Currently, white light emitting diodes are composed of UV or blue LED with down-converting materials such as highly luminescent phosphors White light-emitting diodes (LED) were fabricated with multi-shell nanocrystal quantum dots for enhanced luminance and improved stability over time. Multi-shell quantum dots (QDs) were synthesized through one pot process by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. As prepared, the multi-shell QD has cubic lattice of zinc-blend structure with semi-spherical shape with quantum yield of higher than 60 % in solution. Further, highly fluorescent multi-shell QD was deposited on the blue LED, which resulted in QD-based white LED with high luminance with excellent color rendering properties.

  • PDF

White Light Emission with Quantum Dots: A Review

  • Kim, Nam Hun;Jeong, Jaehak;Chae, Heeyeop
    • Applied Science and Convergence Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Quantum dots (QDs) are considered as excellent color conversion and self-emitting materials for display and lighting applications. In this article, various technologies which can be used to realize white light emission with QDs are discussed. QDs have good color purity with a narrow emission spectrum and tunable optical properties with size control capabilities. For white light emission with a color-conversion approach, QDs are combined with blue-emitting inorganic and organic light-emitting diodes (LED) to generate white emission with high energy conversion efficiency and a high color rendering index for various display and lighting applications. Various device structures for self-emitting white QD light-emitting diodes (QD-LED) are also reviewed. Various stacking and patterning technologies are discussed in relation to QD-LED devices.

Highly efficient white organic light-emitting diodes using hybrid-spacer or/and codoped blue emitting layers

  • Seo, Ji-Hoon;Kim, Gu-Young;Hyung, Gun-Woo;Lee, Kum-Hee;Kim, You-Hyun;Kim, Woo-Young;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1219-1221
    • /
    • 2008
  • The Authors have demonstrated highly efficient white organic light-emitting diodes using hybrid-spacer which was inserted between each emitting layer or/and codoped blue emitting layers with the different functional material. The characteristics of WOLEDs showed the maximum external quantum efficiency of 13.8%, power efficiency of 33.66 lm/W, and Commission Internationale de I'Eclairage coordinates of (x=0.36, y=0.37), respectively.

  • PDF

Simplified Bilayer White Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jonghee;Sung, Woo Jin;Joo, Chul Woong;Cho, Hyunsu;Cho, Namsung;Lee, Ga-Won;Hwang, Do-Hoon;Lee, Jeong-Ik
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.260-264
    • /
    • 2016
  • We report on highly efficient blue, orange, and white phosphorescent organic light-emitting diodes consisting only two organic layers. Hole transporting 4, 4,' 4"-tris (N-carbazolyl)triphenylamine (TcTa) and electron transporting 2-(diphenylphosphoryl) spirofluorene (SPPO1) are used as an emitting host for orange light-emitting bis(3-benzothiazol-2-yl-9-ethyl-9H-carbazolato) (acetoacetonate) iridium ((btc)2(acac)Ir) and blue light-emitting iridium(III)bis(4,6-difluorophenyl-pyridinato-N,C2') picolinate (FIrpic) dopant, respectively. Combining these two orange and blue light-emitting layers, we successfully demonstrate highly efficient white PHOLEDs while maintaining Commission internationale de l'eclairage coordinates of (x = 0.373, y = 0.443). Accordingly, we achieve a maximum external quantum, current, and power efficiencies of 12.9%, 30.3 cd/A, and 30.0 lm/W without out-coupling enhancement.

Nanocrystalline $Y_3Al_5O_{12}$:Ce Phosphor-Based White Light-Emitting Diodes Embedded with CdS:Mn/ZnS Core/Shell Quantum Dots

  • Kim, Jong-Uk;Lee, Dong-Kyoon;Lee, Jong-Jin;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.588-590
    • /
    • 2008
  • Yellow-emitting $Y_3Al_5O_{12}$:Ce nanocrystalline phosphor and orange-emitting CdS:Mn/ZnS core/shell quantum dots were prepared by a modified polyol and a reverse micelle chemistry, respectively. To compensate a poor color rendering index of YAG:Ce nanocrystalline phosphor due to the lack of red spectral component, CdS:Mn/ZnS quantum dots were blended into YAG:Ce. Based on spectral evolutions in the blended systems, hybrid white light emitting diodes are fabricated and characterized.

  • PDF

Luminescence Properties of $Y_2SiO_5:Eu^{3+}$ as Red-Emitting Phosphor for White Light Emitting Diodes

  • Song, Y.H.;Park, W.J.;Yoon, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1303-1304
    • /
    • 2009
  • In order to apply to the White light emitting diodes (WLEDs), The $Y_2SiO_5:Eu^{3+}$ as red phosphor was synthesized by solid state reaction method. The highest emission of $Y_2SiO_5:Eu^{3+}$ was shown when the $Eu^{3+}$ concentration was 0.02. A single phase was observed from X-ray diffraction (XRD) analysis of synthesized samples and secondary phase wasn't found.

  • PDF

Efficient White Phosphorescent Organic Light-emitting Diodes for Solid-State Lighting Applications Using an Exciton-confining Emissive-Layer Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Lee, Jun-Yeob;Kang, Dong-Min;Yuanc, Wei;Kwon, Soon-Ki;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.92-95
    • /
    • 2009
  • Highly efficient blue and white phosphorescent organic light-emitting diodes (PHOLEDs) with an exciton-confining structure were investigated in this study. Effective charge confinement was achieved by stacking two emitting layers with different charge-transporting properties, and blue PHOLEDs with a maximum luminance efficiency of 47.9 lm/W were developed by using iridium(III) bis(4,6-(difluorophenyl) pyridinato-N,C2')picolinate (FIrpic) as an electrophosphorescent dopant. Moreover, when the optimized green and red emitting layers were sandwiched between the two stacked blue emitting layers, white PHOLEDs (WOLEDs) with peak external and luminance efficiencies of 19.0% coupling technique.and 54.0 lm/W, respectively, were obtained without the use of any out-coupling technique.

Optical Properties of White Light Sources Using Red, Green, Blue Emitting Phosphors and Violet Light Emitting Diodes (적색, 녹색, 청색 발광 형광체와 보라색 발광 다이오드를 이용한 백색 광원의 광 특성)

  • Kweon, Seok-Soon;Park, Jong-Yun;Huh, Young-Duk
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.145-150
    • /
    • 2006
  • Various colors of light emitting diodes(LED) and four-band white light sources are obtained using a violet LED and various phosphor films. $BaMg_2Al_{16}O_{27}:Eu\;(blue),\;SrGa_2S_4:Eu\;(green),\;and\;Eu(TTA)_3(PTA)$ (red) phosphors are dispersed in poly-vinyl-alcohol aqueous solutions, and phosphor films are prepared by coating the suspensions to PET film. The narrow band emission of $Eu(TTA)_3(PTA)$ phosphor has excellent red luminescent property for four-band white light excited by the violet LED.

Improved Performance of White Phosphorescent Organic Light-Emitting Diodes through a Mixed-Host Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.642-646
    • /
    • 2009
  • Highly efficient white phosphorescent organic light-emitting diodes with a mixed-host structure are developed and the device characteristics are studied. The introduction of a hole-transport-type host (N, N'-dicarbazolyl-3-3-benzen (mCP)) into an electron-transport-type host (m-bis-(triphenylsilyl)benzene (UGH3)) as a mixed-host emissive layer effectively achieves higher current density and lower driving voltage. The peak external quantum and power efficiency with the mixed-host structure improve up to 18.9% and 40.9 lm/W, respectively. Moreover, this mixed-host structure device shows over 30% enhanced performance compared with a single-host structure device at a luminance of 10,000 $cd/m^2$ without any change in the electroluminescence spectra.