• Title/Summary/Keyword: white light emitting diode

Search Result 181, Processing Time 0.036 seconds

The Fabrication and Characteristics of White Organic Light-Emitting Diodes using Blue and Orange Emitting Materials (청색과 오렌지색 발광재료를 사용한 백색 유기발광소자 제작 및 특성 분석)

  • Kang, Myung-Koo
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.1-6
    • /
    • 2006
  • The white organic light emitting diode(OLED) with two-wavelength was fabricated using the DPVBi of blue emitting material and a series of orange colar fluorescent dye(Rubrene) by vaccum evaporation processes. The basic structure of OLED was ITO/TPD$(225{\AA})$/DPVBi/Rubrene/BCP$(210{\AA})/Alq_3(225{\AA})/Al(1000{\AA})$. We analyzed the fabricated device through the changes of the DPVBi and Rubrene layer's thickness. We obtained the white OLED with the CIE coordinate of the device was (0.29, 0.33) and luminescence of $1000cd/m^2$ at applied voltage of 15V when 4he thickness of DPVBi layer was 210${\AA}$ and the thickness of Rubrene layer was 180${\AA}$.

Efficient White Organic Light-emitting Device by utilizing a Blue-emitter Doped with a Red Fluorescent Dopant

  • Lim, Jong-Tae;Ahn, Young-Joo;Kang, Gi-Wook;Lee, Nam-Heon;Lee, Mun-Jae;Kang, Hee-Young;Lee, Chang-Hee;Ko, Young-Wook;Lee, Jin-Ho
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2003
  • We synthesized bis (2-methyl-8-quinolinolato)(triphenylsiloxy) aluminum (III) (SAlq), a blue-emitting material having a high luminous efficiency, through a homogeneous-phase reaction. The photoluminescence (PL) and electroluminescence (EL) spectra of SAlq show two peaks at 454 nm and 477 nm. Efficient white light-emitting devices are fabricated by doping SAlq with a red fluorescent dye of 4-dicyanomethylene-2-methyl-6-{2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-8yl) vinyl}-4H-pyran (DCM2). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCM2 results in light-emission of both blue and orange colors. Devices with the structure of ITO/TPD (50 nm)/SAlq:DCM2 (30 nm, 0.5 %)/$Alq_3$ (20 nm)/LiF (0.5 nmj/Al show EL peaks at 456 nm and 482 nm originating from SAlq and at 570 nm from DCM2, resulting in the Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.32, 0.37). The device exhibits an external quantum efficiency of about 2.3 % and a luminous efficiency of about 2.41m/W at 100 $cd/m^2$. A maximum luminance of about 23,800 $cd/m^2$ is obtained at the bias voltage of 15 V.

Synthesis and Luminescent Characteristics of (Sr,Ba)2Ga2SiO7:Eu2+ Green Phosphor for LEDs (LED용 (Sr,Ba)2Ga2SiO7:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Park, Jeong-Gyu;Lee, Seung-Jae;Yeon, Jeong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.137-140
    • /
    • 2006
  • In this report, Europium doped strontium barium gallium silicate ((Sr,Ba)2Ga2SiO7:Eu2+) phosphor has been synthesized by conventional solid-state method and investigated luminescent characteristic. Appropriate proportions of the raw materials were mixed in an agate mortar with acetone to obtain starting mixtures. Also, this phosphor was prepared by simple process under the reduction atmosphere (25% H2/75% N2). This phosphor can be applicated to the green phosphor for white LED because it has green emission band (513 nm), which emits efficiently under the 405nm excitation energy.

Implementation of the Equalization Circuits for High Bandwidth Visible Light Communications Using Phosphorescent White LED (인광성 백색 LED의 가시광 통신 변조 대역폭 향상을 위한 등화기 구현)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.473-477
    • /
    • 2015
  • In this paper, a commercial phosphorescent white light-emitting diode (WLED) visible light communication (VLC) system with an equalization circuit to achieve the high modulation bandwidth was designed and demonstrated. An analytical method to examine the performance of the equalizer was carried out using a general circuit-simulator, PSpice. The equalization circuit was composed of two passive filters with resisters and a capacitor and an active filter with an op-amp. Utilizing our post-equalization technology, the ~3.5 MHz bandwidth of phosphor WLED could be extended to ~25 MHz without using an optical blue-filter. In this VLC system with a single round-type WLED and a single PIN photo-diode, ASK data transmission up to 35 Mbps at a 1m free space distance was obtained. The resulting bit-error-rate was $7.6{\times}10^{-4}$, which is less than the forward error correction (FEC) limit of $3.8{\times}10^{-3}$.

Design of white tandem organic light-emitting diodes for full-color microdisplay with high current efficiency and high color gamut

  • Cho, Hyunsu;Joo, Chul Woong;Choi, Sukyung;Kang, Chan-mo;Kim, Gi Heon;Shin, Jin-Wook;Kwon, Byoung-Hwa;Lee, Hyunkoo;Byun, Chun-Won;Cho, Nam Sung
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1093-1102
    • /
    • 2021
  • Microdisplays based on organic light-emitting diodes (OLEDs) have a small form factor, and this can be a great advantage when applied to augmented reality and virtual reality devices. In addition, a high-resolution microdisplay of 3000 ppi or more can be achieved when applying a white OLED structure and a color filter. However, low luminance is the weakness of an OLED-based microdisplay as compared with other microdisplay technologies. By applying a tandem structure consisting of two separate emission layers, the efficiency of the OLED device is increased, and higher luminance can be achieved. The efficiency and white spectrum of the OLED device are affected by the position of the emitting layer in the tandem structure and calculated via optical simulation. Each white OLED device with optimized efficiency is fabricated according to the position of the emitting layer, and red, green, and blue spectrum and efficiency are confirmed after passing through color filters. The optimized white OLED device with color filters reaches 97.8% of the National Television Standards Committee standard.

Cultivation of Tetraselmis suecica under Different Types of Light Emitting Diodes (LED 조명을 이용한 광생물 반응기에서의 Tetraselmis suecica 배양 연구)

  • Lee, Jae-Keun;Lim, Jun-Hyuk;Lee, Tae-Yoon
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.757-761
    • /
    • 2012
  • The purpose of this study was to determine optimum conditions for the cultivation of Tetraselmis suecica (T. suecica) under illumination of four different types of LEDs (i.e., blue, red, white, and mixed). Initial cell concentration was $4{\times}10^4$ cells/mL and temperature of reactor was maintained between 21-$24^{\circ}C$. Specific growth rates were 0.72 $day^{-1}$(white), 0.58 $day^{-1}$(red), 0.49 $day^{-1}$(mixed), and 0.49 $day^{-1}$(blue). Thus, white LEDs was used for the cultivation of T. suecica. Tests with white LEDs under different light intensity, which was conducted to determine optimum light intensity of white LEDs, showed that 9,000 lux of illumination resulted in fastest cell growth and greatest cell concentrations. To avoid shadow effects by dense cell populations, aeration was performed. Cell concentration increased 3.8 times when aeration was used.

Properties of high efficiency 2-${\lambda}$ white organic light emitting diode (고 효율 2파장 백색 유기 발광 소자의 발광 특성)

  • Lee, Oun-Gyu;Oh, Young-Jun;Ko, Young-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.324-325
    • /
    • 2006
  • In order to develop high efficiency white organic light-emitting diodes (OLEDs), OLED devices consisted of red and blue emitting layers (EMLs) were fabricated and the effect of respective layer thickness and the order of layer stacking on the luminous efficiency was evaluated Red/blue structure showed higher efficiency than blue/red, due to the higher exiton formation. In the blue layer of red/blue structure. However, the efficiency of the red/blue significantly depended on the thickness of the red layer, whereas the thickness of the blue layer was not affect so much. The optimum thickness of the red layer was 20 ${\AA}$, where the luminous and power efficiencies were 155 cd/A and 10.51 lm/W at 1000~3000$cd/m^2$ respectively and the maximum luminance was about 80,000 $cd/m^2$.

  • PDF

A LED Light Communication Transceiver Module for Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크용 LED 가시광통신 송수신 모듈 및 효율 연구)

  • Jang, Tae-Su;Kwon, Jae-Hyun;Kim, Yong-Kab;Park, Choon-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1513-1518
    • /
    • 2012
  • This paper is implemented media transmission system of VLC transmitter and receiver module using LED of White lighting that is based on PC module and to transmission technology for performance analysis. To realize LED visible light communication receiver is used 1~12 LED light-emitting device and transmitter is used a variable sensor. Developed initial distance of the tranceiver is more than 0~1m for LED VLC and the overall system transmission speed is achieved on variable having Visible light media transmission system. Composition to PC module with LED module and infrared sensor for performance analysis, predict and analyze the communication distance, check about the possibility of application methods. Measure each performance when the lens wearing and not wearing in order to increase the overall efficiency of the LED module, can know that increase efficiency of approximately 20%.

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

White organic light emitting diode with single emission layer DPVBi partially doped with rubrene

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1002-1005
    • /
    • 2006
  • In this study, we fabricated white organic light emitting devices (WOLEDs) to use single emission layer, DPVBi with partially doped Rubrene. To realize white color, rubrene with 3.6% was partially doped with the gap from interface between DPVBi and hole transport layer NPD in a definite DPVBi layer. As the gap was increased, the intensity of orange peak grows less and less. The WOLED with gap of $5\;{\AA}$ has the best color stability and its color coordination is (0.345, 0.321) at 6V.

  • PDF