• Title/Summary/Keyword: whirling process

Search Result 13, Processing Time 0.041 seconds

Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining (볼스크류 가공용 선회형 스핀들의 발열 특성에 관한 연구)

  • Moon, Hong-Man;Kim, Sang-Won;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.44-51
    • /
    • 2020
  • We studied the heating characteristics of a whirling spindle. This spindle is an important component of a whirling machine for turning a ball screw shaft. In the manufacturing process for a conventional ball screw shaft, a single tool is used to form a spiral in a lathe machine tool. Thereafter, a high-frequency heat treatment process is performed. Recently, a whirling-type cutting method has emerged. This method can perform hard turning in the rotating direction of the spiral portion of the ball screw shaft by rotating and mounting multiple tools. The whirling method can be applied to the heat-treated material. In this study, an experimental apparatus was constructed to analyze the whirling spindle. The experiment proceeded in four steps. The rotating speed of the whirling spindle was set to ISO random and sequential rising conditions. Cooling and non-cooling modes in the cooling jacket were tested. As a result of the above experiment, the heating characteristics of the whirling spindle were derived.

A Study on Performance Improvement of Whirling Machines (Whirling machine의 성능 개선을 위한 연구)

  • Lee Jung-Ki;Yang Woo-suk;Son Jea-seok;Han Hui-duck;Kim Han-soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1416-1429
    • /
    • 2005
  • In order to meet the increasing competitive pressures coupled with higher demands for component quality, whirling machines have been at the cutting edge of the automobile industry for more than 25 years. The hard whirling process can save on machining time and operation elimination. Hard whirling is done dry, without coolant. The chips carry away nearly all of the heat during cutting, leaving the workpiece cool and minimizing any thermal geometry variations. The surface finish and profile accuracy are close to grinding quality. Whirling machines usually consist of four major parts; 1) loading system that requires the necessary axial speeds, 2) head stock that needs high precision clamping and positioning system at the chuck and tailstock, 3) whirling unit that demands the high cutting speeds and cutting power fer cutting deep thread profiles and 4) unloading system that requires an easy workpiece unloading. Also, capabilities of the whirling machine can be improved by attaching a vision system to the machine. Most of whirling machines in Korean automobile industry are imported from the Leistritz company, Germany and the Hasegawa company, Japan. Tn this paper, a basic research will be performed to improve and enhance the existing whirling machines. Finally, a new Korean whirling machine will be proposed and developed.

A Study on the Cutting Force of Side Milling Cutter and Whirling Tool in Worm Screw Machining (Worm 절삭 가공 시 Side Milling Cutter 와 Whirling Tool 의 절삭력에 관한 연구)

  • Gwon T.W.;Kim C.H.;Kang D.B.;Lee M.H.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1879-1882
    • /
    • 2005
  • Due to increase of demands on safety and convenience for automotive vehicle, the use of DC motor, such as power window, seat adjusting, pedal adjusting, sunroof, electric shift motor and so on, is increasing rapidly in the whole world. Worm gear is an important part to transmit torque to another gear in gear mechanism of automotive DC motor. But with current forming process, it has some problems in manufacturing and the quality. Also, the characteristics of automotive parts such as price and mass-production limit the quality improvement. Recently several methods are used in order to reduce a worm screw machining time and to maintain precision. In this paper, we introduce whirling tool machining and side milling cutter machining as effective manufacturing method of worm screw and study on the cutting force of side milling cutter and whirling tool in worm screw machining.

  • PDF

A Study on the Improvement of Sculptured surface Sopography in Milling Operation by Using Tertiary Motion Attachment (밀링작업에서 보조장치를 이용한 자유곡면의 표면거칠기 향상에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-72
    • /
    • 1996
  • The applicability of a new method, termed the whirling motion concept, for the improvement of the surface finish in milling three-dimensional sculptured surfaces has been investigated. A method for implementing this concept o conventional NC machines that utilize a suitably configured attachment has been proposed. The tool path equation for the ball-end milling process, based on the surface-shaping system, has been obtained. Both results of the computer simulation and the experiment verified the proposed approach.

  • PDF

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

A Study on the Improvement of Sculptured Surface Topography in Milling Operation by using tertiary Motion Attachment (밀링작업에서 보조장치를 이용한 자유곡면의 표면거칠기 향상에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.149-154
    • /
    • 1996
  • The applicability of a new method, termed the whirling motion concept, for the iprovement of the surface finish in milling three-dimensional sculptured surfaces has been investigated. A method for implementing this concept on conventional NC machines that utilize a suitably configured attachment has been proposed. The tool path equation for the ball-end milling process, based on the Surface-Shaping system, has been obtained. Both results of the computer simulation and the experiment verified the computer simulation and the experiment verified the proposed approach.

  • PDF

A Study on 4-Axis Machining for Mono Pump Rotor (모노펌프 로터 4-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Park, Jong-Bae;Wang, Si-Kuan;Heo, Yu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.94-102
    • /
    • 2019
  • Mono pump rotors are widely used in wastewater treatment plants, medicine, cosmetics, paint, paper, and chemical manufacturing, dairy production, public works, agriculture, and so on. A mono pump comprises two main parts: the rotor and stator. Typically, the rotor is machined using an expensive whirling machine. In this study, we developed an algorithm for 4-axis machining of the rotor on machining center (MCT). NC-code was obtained by applying the algorithm and finally the rotor of the mono pump was machined on a 4-axis MCT. Results of four sample experimental works showed close agreement with design geometries.

Effects of Design Conditions in Five Pad Tilting Pad Bearing on the Lateral Vibration Characteristics of Small Gas Turbine (5패드 틸팅 패드 베어링의 설계 조건 변화가 소형 가스터빈의 횡진동 특성에 미치는 영향)

  • Ha, Jin-Woong;Myung, Ji-Ho;Suk, Jhin-Ik;Lee, An-Sung;Kim, Young-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.752-760
    • /
    • 2011
  • In tilting pad bearing design process, the selection of the proper configuration type of either a load-between-pad(LBP) or load-on-pad(LOP) as well as preload and pivot offset conditions is to be carefully considered. Also the bearing needs to be designed in order to be suited for the rotor-bearing system and operating condition. In this paper, it is observed that the dynamic characteristics in a five pad tilting pad bearing for the LBP and the LOP configurations are influenced by the variation of preload and pivot offset. In this context, rotor dynamic analysis of the 5 MW industrial gas turbine supported by the tilting pad bearing at the front and roller bearing at the rear is carried out based on the dynamic coefficients of the tilting pad bearing investigated. The result shows that two rigid body critical modes experience various changes according to the influence of the tilting pad bearing uniquely applied to one side of this machine. Mainly, the second critical speed, the rigid body mode of conical shape with high whirling in the tilting pad bearing, is significantly changed by preload and pivot offset regardless of the LBP and LOP configurations. And, the first critical mode, the rigid body mode of conical shape with high whirling in the roller bearing, is sensitively affected by preload applied to the LOP configuration and by its asymmetric dynamic properties.