• 제목/요약/키워드: wheel-based navigation

검색결과 41건 처리시간 0.017초

야지 주행을 위한 견마형 로봇 개발 (Development of Mobile Robot for Rough Terrain)

  • 이지홍;심형원;조경환;홍지미;김중배;김성훈
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.883-895
    • /
    • 2007
  • In this work, we present the development of a patrol robot which is intended to navigate outdoor rough terrain. Proposed mechanism consists of six legs for overcoming an obstacle, and six wheels for traveling. Also, in order to absorb vibration in rough terrain effectively, the slide-spring system and tubed type tire are adopted to each leg and each wheel. The control system of robot consists of several imbedded boards for management of lots of diverse devices such as sensors designed for rough terrain, motor controllers, camera, micro controller and so on. And the base system of the robot is designed to operate in real time and to surveille in the vicinity of the robot, and the robot system is controlled by wireless LAN connected to GUI-based remote control system, while CAN communication connects the control board and the device controllers for sensors and motor controllers. For operating this robot system efficiently, we propose the control algorithms for autonomous navigation using GPS, stabilization maintenance by posture control, obstacle-avoidance by impedance control, and obstacle-overcoming with interference-avoidance between wheels. The performance of the robot and the proposed algorithms are tested and proved by a set of experiments in outdoor rough terrain.

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • 한국산업융합학회 논문집
    • /
    • 제27권4_1호
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

결합 가능한 복합 바퀴-다리 이동형 로봇에 관한 연구 (A Study on Hybrid Wheeled and Legged Mobile Robot with Docking Mechanism)

  • 이보훈;이창석;김용태
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.692-697
    • /
    • 2011
  • 로봇의 이동성 향상을 위해 다양한 환경에 적응할 수 있는 로봇의 연구 개발이 활발하게 진행되고 있다. 본 논문에서는 휠(wheel)과 다리(Leg)기반 변형이 가능하고, 로봇간 상호 결합이 가능한 복합 이동형 로봇을 제안하였다. 복합 이동형 로봇은 로봇간 결합을 위해 페그 모듈과 컵 모듈을 로봇의 전면과 후면에 각각 장착하고, 주행과 보행이 가능하도록 구현하였다. 다양한 지형에서 이동성을 향상을 위해 임베디드 영상기반 결합 및 분리 알고리즘을 제안하였으며, 로봇간 결합을 통해 끊어진 도로와 비평탄 지형에서의 결합 이동 방법을 제안하였다. 제안한 방법은 로봇의 전면과 밑면에 장착된 PSD 센서를 이용하여 지형을 인식하고, 지형에 맞은 극복 알고리즘을 통해 로봇간 협력을 통해 이동성을 향상시킨다. 제안한 방법들은 임베디드시스템 기반의 복합 주행 이동형 로봇을 실제 제작하여 실험 통해 성능을 검증하였다.

PXI embedded real-time controller를 이용한 Bimodal-tram Simulator (Bimodal-tram Simulator using PXI Embedded Real-time Controllers)

  • 변윤섭;김영철
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper we present the Bimodal-tram simulator using the PXI embedded real-time controllers. The Bimodal-tram is developed in KRRI (Korea Railroad Research Institute). The vehicle can be automatically operated by navigation control system (NCS). For the automatic driving, the vehicle lanes will be marked with permanent magnets that are placed in the ground. The vehicle is controlled by NCS. NCS governs the manual mode and automatic mode driving. The simulator is designed by an identical conception with the real control condition. The dynamic motion of vehicle is simulated by the nonlinear dynamic model. The control computer calculates the control values. The signal interface is linked by CAN communication. The simulation is processed by real-time base. The test driver can see the graphic motion of vehicle and can operate the steering wheel, gas and brake pedal to control direction and velocity of vehicle during the simulation. At present, the simulator is only operated by manual mode. The automatic mode will be linked after the control algorithm is finished. We will use the simulator to develop the control algorithm in the automatic mode. This paper shows the simulator designed for Bimodal-tram using real-time based controller. The results of the test using the simulator are presented and discussed.

로봇형 차량의 자율주행을 위한 센서 기반 운동 계획법 개발 (Development of Sensor-based Motion Planning Method for an Autonomous Navigation of Robotic Vehicles)

  • 김동형;김창준;이지영;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제17권6호
    • /
    • pp.513-520
    • /
    • 2011
  • This paper presents the motion planning of robotic vehicles for the path tracking and the obstacle avoidance. To follow the given path, the vehicle moves through the turning radius obtained through the pure pursuit method, which is a geometric path tracking method. In this paper, we assume that the vehicle is equipped with a 2D laser scanner, allowing it to avoid obstacles within its sensing range. The turning radius for avoiding the obstacle, which is inversely proportional to the virtual force, is then calculated. Therefore, these two kinds of the turning radius are used to generate the steering angle for the front wheel of the vehicle. And the vehicle reduces the velocity when it meets the obstacle or the large steering angle using the potentials of obstacle points and the steering angle. Thus the motion planning of the vehicle is done by planning the steering angle for the front wheels and the velocity. Finally, the performance of the proposed method is tested through simulation.

크리깅 근사모델 모델을 이용한 LMTT 이동체의 구조최적설계 (Structural Optimization for LMTT-Mover Using the Kriging Based Approximation Model)

  • 이권희;박형욱;한동섭;한근조
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 춘계학술대회 논문집
    • /
    • pp.385-390
    • /
    • 2005
  • LMTT(Linear Motor-based Transfer Technology)는 항만 자동화를 위한 수평 이송 시스템이며, 셔틀카(shuttle car)와 격자구조의 레일에 부착된 스테이터 모듈(stator module)로 구성된 PLMSL(Permanent Magnetic Linear Synchronous Motor)에 의해 구동된다. 본 논문에서는 LMTT시스템 부품인 이동체(mover)의 경량화를 위하여 직교배열표 및 크리깅 방법을 이용하여 최적설계를 수행한다. 설계변수로는 가로빔, 세로빔, 휠빔의 두께와 높이 방향의 치수를 결정하는 형상변수를 포함시켰다. 목적함수로는 중량, 제한조건 함수로는 안전율이 고려된 응력으로 설정하였다. 본 연구에서 제시된 방법으로 구한 최적해를 민감도기반 최적설계로 구해진 최적해와 비교, 검토하였다.

  • PDF

순차적 크리깅 근사모델을 이용한 LMTT 이송체의 구조최적설계 (Structural Optimization for LMTT-Mover Using Sequential Kriging Based Approximation Model)

  • 박형욱;한동섭;이권희;한근조
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.289-295
    • /
    • 2005
  • LMTT(Linear Motor-based Transfer Technology)는 항만 자동화를 위한 수평 이송 시스템이며, 셔틀카(shuttle car)와 격자구조의 레일에 부착된 스테이터 모듈(stator module)로 구성된 PMLSM(Permanent Magnetic Linear Synchronous Motor)에 의해 구동된다. 본 논문에서는 LMTT시스템에서 컨테이너 운반을 담당하는 셔틀카(shuttle car)를 구성하는 부품인 이동체(mover)의 경량화를 위하여 직교배열표 및 크리깅 방법을 이용하여 최적설계를 수행한다. 설계변수로는 가로빔, 세로빔, 휠빔의 두께를 제한조건 함수로는 안전율이 고려된 응력을 넘지 않도록 설정하였다. 목적함수로는 중량을 설정하였다. 본 연구에서 제시된 방법으로 구한 최적해는 크리깅 내삽법(Kriging interpolation)으로 알려진 DACE(Design and Analysis of Computer Experiments) 모델을 엑셀(Excel)로 수식화하고 구했으며, GENESIS를 이용하여 민감도기반 최적설계로 구해진 최적해와 비교 및 검토하였다.

  • PDF

마찰 보상과 지도 정합에 의한 미끄럼 조향 이동로봇의 실내 주행 (Indoor Navigation of a Skid Steering Mobile Robot Via Friction Compensation and Map Matching)

  • 소창주;유준
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.468-472
    • /
    • 2013
  • This paper deals with the indoor localization problem for a SSMR (Skid Steering Mobile Robot) subjected to wheel-ground friction and with one LRF (Laser Range Finder). In order to compensate for some friction effect, a friction related coefficient is estimated by the recursive least square algorithm and appended to the maneuvering command. Also to reduce odometric information based localization errors, the lines are extracted with scan points of LRF and matched with the ones of the corresponding map built in advance. The present friction compensation and scan map matching schemes have been applied to a laboratory SSMR, and experimental results are given to validate the localization performance along an indoor corridor.

PC를 이용한 선박조종연습 DESKTOP Simulator개발에 관한 연구 (A Study on the Development of PC-based DestTop Ship Maneuvering Simulator for trainning purpose)

  • 허용범;윤점동
    • 한국항해학회지
    • /
    • 제20권2호
    • /
    • pp.1-13
    • /
    • 1996
  • Most of the ShipHandling Simulators of full-mission-bridge system need vast area to install and even PC-based maneuvering simulators are often equipped with Steering Wheel or Engine Telegraphe etc. of data input interface, which necessarily makes the user face with excessive financial burden. These have been one of the obstacles for the officers, captains, pilots and students in access to maneuvering simulation whenever they want to try it in advance prior to actual ship maneuvering. Subsequently, all the officers and captains come to have little chances to train themselves until they arualified as a pilot after a long period of time of realship maneuvering practice on board, which means they have to control they have to control their own ship at sea without clear understanding on her maneuverability when they are forced to do it on the way. And these lack of capability for maneuvering have used so often to result in marine casualties of collision with other ships or pier facilities while maneuvering in harbor. To prevent those accidents by means of enhancing their maneuvering ability, PC-based DeskTop Simulator that allows anyong to access readily at anytime is needed and in conformation to such demand this simulator has been developed. The Software this simulator written in Turbo Pascal Ver. 5.0 has adopted MMG mathmatical model theoretically in part and also it was designed to make it possible that all numeric data inputs and outputs with graphic presentation for maneuvering operation be carried out just only with keyboard and monitor console. With the Simulation software, all the officers, captains, pilots and even students who has a proper computer at hand are expected to be able to make an attempt to simulate the maneuvering of their ownship or any other types of them at any port in which they want to do it.

  • PDF