• Title/Summary/Keyword: wheel width

Search Result 107, Processing Time 0.028 seconds

A Study on the Precision of a Machined Surface in Thrust Internal Grinding (스러스트 내면 연삭가공의 가공면 정도에 관한 연구)

  • Choi, Hwan;Seo, Chang-Yeon;Seo, Young-Il;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.73-79
    • /
    • 2016
  • In this paper, the grinding characteristics in thrust internal grinding have been studied using vitreous CBN wheels with a machining center. Grinding experiments have been performed according to grinding conditions such as wheel feed speed, cut depth, workpiece speed, rate of grinding width and number of grinding passes. The machining error, shape of machined surfaces, grinding force, and surface roughness have been investigated though these experiments. Based on the experimental results, the grinding characteristics on the machined surface in the internal thrust grinding are discussed.

The study of ABS control system using fuzzy controller for commercial vehicles (퍼지 제어기를 이용한 상용차 ABS 제어에 대한 연구)

  • 김동희;박종현;김용주;황돈하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.110-110
    • /
    • 2000
  • In this paper, an antilock brake system (ABS) for commercial vehicles is studied by considering the design of a fuzzy Logic controller with pulse width modulation (PWM). PWM method is used for generating solenoid valve inputs in order to cope with the chattering problem caused by the conventional on/off control The sliding mode observer is designed to estimate the vehicle longitudinal velocity and it is used to calculate the wheel slip ratio. The effectiveness of the proposed control algorithm was validated by simulations performed with a nonlinear 14-DOF vehicle model including the dynamics of the brakes.

  • PDF

Development of Ridger and Vinyl Mulcher for Power Tiller (경운기 부착 휴립, 비닐 피복 동시작업기 개발)

  • 변정수;이은홍;강정용;류명현;홍순근
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 1993
  • Ridger and vinyl mulcher for 8-10 PS power tiller which were distributed at the rate of one out of 2.3 farm households in Korea, was developed to ease the labor shortage of tobacco production. Devices wheel shaft extension by 30cm at both sides improved the stability of straight drive and enabled to save required labor hours by 50% for ridging at sloping field. Screw type blades were attached on center drive rotavator shaft, gear set was deviled to reverse the rotavator, and it was good at need to adjust the width and height for ridge. As the results, required labor hours for ridging and vinyl mulching could be saved by 90% as compared to conventional manual method after cattle plowing, and by 50% as compared to conventional power tiller method.

  • PDF

A Study on the Development of Crack Diagnosis Robot for Reinforced Concrete Structures Based on Image Processing (이미지 프로세싱 기반 철근콘크리트 구조물의 균열진단 로봇 개발에 관한 연구)

  • Kim, Han-Sol;Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.103-104
    • /
    • 2022
  • Cracks may occur in reinforced concrete (RC) structures due to various physical and chemical factors, and the growth of cracks causes deterioration of the structure's performance. It is important to prevent the expansion of cracks through periodic diagnosis of cracks in structures. In order to enable free crack exploration even in a narrow space, a construction robot using a Mecanum wheel that can move up, down, left and right and rotate in place was designed. High-quality crack images were periodically collected through the camera, and the image fragments stored during the exploration were combined into a single photo after the exploration was completed. The robot detected cracks with a width of 0.2 mm or more on the concrete probe surface with an accuracy of about 90% or more.

  • PDF

A Study on the Estimation of the Ride Quality of a Large-Sized Truck Using a Computer Model (컴퓨터 모델을 이용한 대형트럭의 승차성능 평가에 관한 연구)

  • Mun, Il-Dong;O, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2048-2055
    • /
    • 2001
  • This paper develops a computational model for estimating the ride quality of a cabover type large-sized truck in a double wheel bumpy ride test. The computational model is developed using ADAMS. To verify the developed model, an actual vehicle double wheel bumpy ride test is performed. In the test, the vehicle maintains a straight course with a constant velocity such that the front two wheels are passed the bump at the same time. The bump has the height of 60mm, and the width of 550mm. In the test, four velocities are used. They are 10kph, 20kph, 30kph and 40kph. Since the large-sized truck's center of gravity location is high, and its weight is heavy, it is a quite severe test condition to perform the test with more than 30kph velocity. In the test, vertical accelerations on the floor of the cab are measured. The measured accelerations are compared to the simulation results. From the comparison, it is shown that the developed model can predict not only the measured acceleration's tendency but also peak accelerations quite well. In this paper, the validated model is utilized to compare the ride quality between a vehicle with a multi-leaf spring and a vehicle with a tapered leaf spring in the front suspension system in a double bumpy ride test.

Effect of the Elasticity Modulus of the Jig Material on the Blade Edge Shape in the Grinding Process of Sapphire Medical Knife - Part 2 Verification of the Chipping Phenomenon and Elastic Modulus of the Jig Material (사파이어 의료용 나이프의 연삭가공에서 지그의 탄성계수가 날 부 형상에 미치는 영향 : 제2보 탄성계수와 치핑 현상의 검증)

  • Shin, Gun-Hwi;Kang, Byung-Ook;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.63-68
    • /
    • 2017
  • This study determines the selection of an appropriate jig material for the blade edge of the medical sapphire knife. The physical properties of the jig material affects the edge shape and chipping phenomenon in machining of the medical sapphire knife. If a grinding wheel is used, brittle workpieces such as sapphire are easily damaged by the propagation of cracks because the grinding force significantly increases. It is important to constantly maintain the grinding force in the grinding process of the brittle materials. The grinding force can be kept constantly by inducing the elastic deformation of the Jig material because the elastic deformation of brittle work-piece is negligibly low. The chipping phenomenon may be reduced by selecting the proper Jig material. Aluminum, copper, stainless steels and carbon steel were used as Jig materials. The experiment was conducted using a cast iron grinding wheel, which was installed on a conventional grinding machine with the ELID grinding system. The thickness and width of the chipping area were measured using an optical microscope and FE-SEM to analyze the shape of the blade edge. According to the experiment result, the chipping phenomenon decreased, and the sharp edge was formed when the jig materials with low elastic modulus were used.

Modelling and Analysis of Roll-Type Steel Mat for Rapid Stabilization of Permafrost (II) - Parametric Analysis - (영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(II) - 변수해석 -)

  • Moon, Do Young;Kang, Jae Mo;Lee, Janggeun;Lee, Sang Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.109-117
    • /
    • 2014
  • Using the finite element analysis model presented in accompanying paper, parametric study was performed in this paper. Various parameters were considered such as the width of wheel loads-induced permanent plastic deformation, backfill, equivalent thickness and orthogonal characteristic of steel mats. The effects of these parameters were analyzed for vertical and rotational displacements, maximum moment and tensile stress. From the parametric studies, it is found that great vertical deflection and tensile stress above allowable flexural tensile strength are developed in steel mats by the wheel loads-induced permanent plastic deformation. Backfill or increasing the thickness of steel mats is a feasible solution on this problem.

Torque Distribution Algorithm of Independent Drive Articulated Vehicle for Small Radius Turning Performance (독립 구동 굴절차량의 회전반경 감소를 위한 토크분배 알고리즘)

  • Lee, Kibeom;Hwang, Karam;Tak, Junyoung;Suh, In-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.336-341
    • /
    • 2014
  • The articulated structures seen in train or tram applications are being applied in road transportation systems, for use in mass passenger transit. When articulated vehicles are driven on public roads, they no longer follow a guided track. Therefore, there are a lot of control elements that need to be considered, such as turning radius, swept path width, off-tracking, and swing-out. Some of the currently available articulated vehicles on roads are equipped with an independent drive system; a system that has one motor at each wheel. Through this drive system, each wheel can be independently controlled, making precise and quick dynamic stability control possible. In this paper, we propose a torque distribution algorithm that can reduce the overall turning radius of the articulated vehicle, which has been verified through dynamic simulation.

Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture - (반궤도식 산림작업차 개발(I) - 설계 및 제작 -)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.154-164
    • /
    • 2011
  • This study was conducted to develop the semi-crawler type mini-forwarder that can be operated comfortable small-scale logging operation in the steep terrain and also used at a variety of operations such as the civil work in erosion control and forest-road. Considering the minimum turning radius and the width of forest operation road, the total length, width and loading capacity of the semi-crawler type mini-forwarder is 5,750 mm, 1,900 mm and $2.5m^{3}$, respectively. The maximum engine power is 96ps at 3600 rpm. Selected hydraulic pumps are consists of two main pumps and two sub-main pumps. Main hydraulic pumps are utilized to running motor of the front wheel and rear crawler. Sub-main pumps are utilized to the actuation parts such as steering, crane, out-rigger and dump cylinder. The transmission was adapted as the HST (Hydro-Static Transmission) system. The driving parts are designed and manufactured as the front wheel type and the rear crawler type. The steering type was manufactured as the ackerman type. Driving control parts type was designed and manufactured as driver's seat type of normal cars. It is also attached on auxiliary equipments such as winch, log grapple and out-rigger. The traveling speed of the semi-crawler type mini-forwarder in forest road was 5.3 km/hr to 7.7 km/hr.

Influence of Heat Treatment on Transformation Characteristics and Shape Recovery in Fe-X%/Mn-5Cr-5Co-4Si Alloy Ribbons (Fe-X%Mn-5Cr-5Co-4Si 합금 리본의 변태특성 및 형상기억능에 미치는 열처리 영향)

  • Kang, H.W.;Jee, K.K.;Jang, W.Y.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • The change of ribbon geometry, microstructure and shape recovery with Mn contents, wheel speed and various annealing temperature have been studied in Fe-X%Mn-5Cr-5Co-4Si (X%=15, 20, 24) shape memory alloy (SMA) ribbons rapidly solidfied by single roll chill-block melt-spinning process. The thickness and width of melt-spun ribbons are reduced, results in refining and uniformalizing grains with increasing wheel speed. In the ribbons melt-spun at a wheel speed of 15m/sec, both ${\varepsilon}$ and ${\alpha}^{\prime}$martensites are formed in ribbon 1 (15.5wt%Mn), while only ${\varepsilon}$ martensite is revealed in ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn). The volume fraction of ${\varepsilon}$ martensite is decreased with increasing Mn contents, and those of ${\varepsilon}$ as well ${\alpha}^{\prime}$martensites are increased due to thermal stress relief and grain growth with increasing annealing temperature. Ms temperatures of the ribbons 1, 2 and 3 are fallen with increasing Mn contents. $M_s$ temperatures of the ribbons 1, 2 and 3 annealed at $300^{\circ}C$ for 3 min are risen abruptly, but are nearly constant even at higher annealing temperature, i.e., 400, 500 and $600^{\circ}C$ for 3 min. Shape recovery of the ribbons 1, 2 and 3 increased 30%, 52% and 69% with Mn contents, respectively. Shape recovery of ribbon 1 (15.5wt%Mn) formed ${\varepsilon}$ and ${\alpha}^{\prime}$martensites decreased because of the presence of ${\alpha}^{\prime}$martensite but those of ribbon 2 (20.2wt%Mn) and ribbon 3 (23.5wt%Mn) formed ${\varepsilon}$ martensite increased with increasing annealing temperature.

  • PDF