• Title/Summary/Keyword: wheel torque

Search Result 285, Processing Time 0.026 seconds

Torque and Force Measurement of a Prototype HAU Reaction Wheel and the Effect of Disturbance on the Attitude Stability of Spacecraft

  • Oh, Hwa-Suk;Kwon, Jae-Wook;Lee, Hyunwoo;Nam, Myung-Ryong;Park, Dong-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.743-751
    • /
    • 2001
  • A Prototype reaction wheel, named the Hankuk Aviation University (HAU) reaction wheel, has been developed for KAISTSAT satellite series. Torque and force disturbances are inherent in reaction wheels, and thus the force and torque characteristics should be examined for every newly developed reaction wheel. The torque and force disturbance noises in the prototype HAU reaction wheel are measured with a torque-measuring table developed for the present study. A new measuring procedure based on a simple principle is applied for the measurements. The frequency characteristics of the torque and force noises are analyzed by examining the power spectral density. The effect of the torque noise on the attitude stability is also examined through numerical simulations with a single-axis attitude model. The noise-induced attitude error and jitter and found to be well below the specified error limits for the KAISTSAT satellite series.

  • PDF

Steering Wheel Torque Control of Electric Power Steering by PD-Control

  • Pang, Du-Yeol;Jang, Bong-Choon;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1366-1370
    • /
    • 2005
  • As the development of microprocessor technology, electric power steering (EPS) system which uses an electric motor came to use a few years ago. It can solve the problems associated with hydraulic power steering. The motor only operates when steering assistance is needed, so it can save fuel and can reduce weight and cost by eliminating hydraulic pump and piping. As one of performance criteria of EPS systems, the transmissibility from road wheel load to steering wheel torque is considered in the paper. The transmissibility can be studied by fixing the steering wheel and calculating the torque needed to hold the steering wheel from road wheel load. A proportion-plus-derivative control is needed for EPS systems to generate desired static torque boost and avoid transmissibility of fluctuation. A pure proportion control can't satisfy both requirements.

  • PDF

Implementation of In-wheel Motor Driving System for Electric Vehicle (In-wheel 모터를 이용한 전기자동차 구동시스템의 구현)

  • Yun, Si-Young;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.750-755
    • /
    • 2013
  • In-wheel motor system gets the driving force from direct-driven motor in the wheel of electric vehicle. It is known as good system for vehicles, from an efficiency, packaging, handling and safety. This paper describes motor and inverter technologies, system configuration and control algorithms for in-wheel type electric vehicle. It is necessary to control on an interrelation perspective because this system drives two motors at same time. In system design, IPMSM(Interior Permanent Magnet Synchronous Motor) including a wide operating range and high-speed rpm is used and flux weakening control is performed in constant power range. Under the torque command from the host controller, auto control box, inverter's output torque is calculated with using torque estimation technique and applied to actual vehicle driving system. It is verified that the configuration and the algorithm are suitable for the in-wheel motor system.

Control of Inverted Pendulum using Twisted Gyro-Wheel (비틀림 자이로휠을 이용한 인버티드 펜듈럼의 제어)

  • Hwang, Jung-Moon;Pyo, Beom-Sik;Kim, Jung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1181-1188
    • /
    • 2011
  • A control system for stabilizing a small robot or inverted pendulum using twisted gyro wheel is proposed. Conventional stabilizer using inertial wheel employs action-reaction force/torque to control a pendulum, which can generate relatively small torque and short period of output. In this paper, a novel actuation method using twisted gyro torque in 3-dimentional space was proposed to stabilizing a pendulum by twisting the assembly including a rotating gyro wheel. In addition, two special control functions for this type of twisted gyro wheel were designed. One is the function of self-adjusting the mass center of the robot and the other is the torque reloading configuration for continuous torque generation. The proposed system was verified by experimental result and simulation. The designed twisted gyro wheel control system can be easily packed in a small size module and installed in a humanoid robot or inverted pendulum type mechanism.

Dynamic Chanrateristics of Spindle for the External Cylindrical Grinding Machine Considered the Shell Mode Vibration of Wheel (Wheel의 원반 진동을 고려한 외경연삭 주축의 동특성)

  • 하재훈;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1000-1004
    • /
    • 1995
  • In the case of the external cylindrical grinding machine, the grinding mechanism can cause a wheel to vibrate due to a wheel cutter. This phenomena will bring about the unsymmetric wear up to high frequency without any relation of rotational speed. So far, when the grinding spindle is analyzed, it is assumed that a wheel is considered as lumped mass at the endof a beam. Nowadays, there is a tendency to use the wheel with a lsrge diameter or CBN wheel to achieve the high speed and accuracy grinding performance. Therefore, this kind of assumption is no longer valid. At the analysis of the grinding spindle, the parameter which dapends on the dynamic characteristics is a combination force between each part. For example, there is the tightness torque of a bolt and taper element in the grindle. In addition, the material property of the wheel can contribute the dynamic characteristics. This paper shows the mode participation of the shell mode of the wheel in the grindle and the dynamic characteristics according to the parameters which are the configuration of the flange and tightness torque of a bolt and taper. Modal parameter of the wheel, flange and the spindle can be extracted through frequency response function obtained by modal test. After that, by changing the tightness torque and kinds of wheel, we could accomplish the test in the whole combined grinding spindle. To perform modal analysis of vibration characteristics in the grinding spindle, we could develop the model of finite element method.

  • PDF

A Study on the Torque Distribution for Improving the Turning Performance of a Vehicle with Torque Vectoring System (토크 벡터링 시스템이 적용된 차량의 선회 성능 향상을 위한 토크 분배에 관한 연구)

  • SeHyeoun Kim;TaeKue Kim;SoongKeun Lee;DongGun Choi;InGyu Choi;Gunpyoung Kwak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.35-43
    • /
    • 2023
  • In next-generation electric vehicles, research is being conducted on an in-wheel motor system that directly controls torque by each wheel to improve total cost and driving performance. Accordingly, in this paper, a study was conducted on an algorithm that distributes the torque applied to each wheel in a torque vectoring system applied to an in-wheel motor for driving an electric vehicle. In order to implement a vehicle model that applies actual vehicle characteristic parameters according to vehicle driving and steering, a simulation was conducted in the MATLAB Simulink environment, and it was confirmed that torque distribution was performed according to the proposed algorithm.

Integrated Chassis Control System of a Rear In-wheel Motor Vehicle (후륜 구동 인휠 전기 자동차의 구동 및 현가 통합제어시스템)

  • Kim, Hyundong;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2016
  • An in-wheel motor vehicle is a type of car that is equipped with an electric motor for each wheel. It is possible to acquire vehicle stability through a seperate driving torque control per wheel, since it directly generates the driving torque via the wheel motors. However, the vehicle ride comfort and road holding performance worsen depending on the increase of the wheel weights. In order to compensate for the impaired performance, an integrated chassis control system of the rear in-wheel motor vehicle is proposed. The proposed integrated chassis control system is composed of a driving torque control system, a semi-active suspension system, and an ESC system. According to the vehicle dynamic simulation of an in-wheel motor vehicle equipped with the integrated chassis control system, it is found that the system can improve the driving stability, ride comfort, and driving efficiency of the in-wheel motor vehicle.

Highly Agile Actuator Development Status of an 800 mNm Control Moment Gyro (CMG)

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Young-Ho Shin;Eunji Lee
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.322-332
    • /
    • 2023
  • Satellite attitude-control actuators are equipped with a reaction wheel for three-axis attitude control. The reaction wheel rotates a motor inside the actuator to generate torque in the vector direction. When using the reaction wheel, there are restrictions on the torque values generated as the motor rotates. The torque value of the reaction wheels mounted on small satellites is approximately 10 mNm, and high values are not used. Therefore, three-axis attitude control of a small satellite is possible using a reaction wheel, but this method is not suitable for missions that require rapid attitude control at a specific time. As a technology to overcome the small torque value of the reaction wheel, the control moment gyro (CMG) is currently in wide use as a rapid attitude-control actuator in space satellites. The CMG has an internal gimbal mounted at a right angle to the rotation motor and generates a large torque value. In general, when the gimbal operates, a torque value approximately 100 times greater is generated, making it suitable for rapid posture maneuvering. Currently, we are developing a technology for mounting a controlled moment gyro on a small satellite, and here we share the development status of an 800 mNm CMG.

Load Characteristics of Rotary Operation Using a Cage Wheel in Wet Paddy Fields (케이지 휠을 이용한 습답 로터리 작업의 부하 특성)

  • 오영근;김경욱;박금숙
    • Journal of Biosystems Engineering
    • /
    • v.26 no.3
    • /
    • pp.229-236
    • /
    • 2001
  • The torque loads acting on the input shaft of the transmission and final driving shaft of the tractor having a cage wheel attached to the driving tries as a traction aid were measured during the rotavating operations in a poorly drained paddy field. Using the measured load data load spectra were constructed. Effects of the design parameters of the cage wheel on the load characteristics were also analyzed. The torque load exerted on the input shaft decreased as the diameter of the cage wheel increased and increased as the rotavator speed increased. The torque load exerted on the final driving shaft increased as the working speed of the tractor increased and decreased as the rotavator speed increased. The torque load on the final driving shaft with the cage wheel were greater than those without the cage wheel.

  • PDF

LOAD CHARACTERISTICS OF ROTARY OPERATION BY TRACTOR IN WET PADDY FIELDS

  • Y. G. Wu;Kim, K. U.;Y. K. Jung
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.101-108
    • /
    • 2000
  • The torque loads were measured at the input shaft of the transmission and driving shaft of the tractor having a cage wheel attached to the driving tires as a traction aid during. a rotavating operation in wet paddy fields with deep hardpan. Their load spectra were also calculated. Effects of design parameters of the cage wheel on the load characteristics were analyzed. The torque load exerted on the input shaft decreased as diameter of the cage wheel increased and increased as the rotating speed of the rotavator increased. The torque load exerted on the driving shaft increased as the working speed of the tractor increased and decreased as the PTO speed increased. Both the torque loads with the cage wheel were greater than those without the cage wheel. The cage wheel was developed for this study.

  • PDF