• Title/Summary/Keyword: wheel test

Search Result 792, Processing Time 0.024 seconds

A study on design of non-pneumatic small industrial wheel using FEM and vibration tests (비공기압 방식 소형 산업용 바퀴의 설계를 위한 수치해석과 진동실험에 관한 연구)

  • Hong, Pil-Gi;Son, Chang-Woo;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.48-54
    • /
    • 2018
  • This paper presents a numerical study for the development of a low-noise low-vibration industrial wheel for non-pneumatic wheel to significantly reduce vibration and noise. For this, design, injection molding and performance testing were performed. Various geometric shapes and materials were taken into account. For numerical analysis, ANSYS, LS-Dyna, and ABAQUS were used to predict the behavior of the wheel under different loadings based on various design changes. Based on this, 4 prototypes were fabricated by changing the design of wheels and molds, and various vibration and noise tests were carried out. A vibration tester was developed and tested to perform the vibration noise test considering durability. A prototype and test of the final wheel was performed. In the case of the vibration test, the vibration levels were 81.16dB and 80.66dB, which were below the target 90dB. Noise levels were 53.20 dB and 52.55 dB below the target 65dB. In the case of the impact resistance test, it was confirmed that there was no change in appearance after impact. The product weight was measured to be 174g compared to the target of 190g.

An Analytical and Experimental Wheel Tracking Study on Dynamic Interaction of Vehicle (차량의 동적 상호작용에 관한 이론연구 및 윤하중 실험)

  • Kim, Nak-Suk;Pak, Suk-Soon
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.39-52
    • /
    • 2006
  • In this paper, an analytical and experimental study was performed in order to determine the effects of interaction between vehicle and structure. Results presented in the paper show that analytical method including moving load effect can investigate the trend of structural response due to dynamic interaction between vehicle and structure. The wheel tracking machine fitted with 2-axle test vehicle can demonstrate more accurate dynamic interaction between vehicle and structure than the wheel tracking machine fitted without 2-axle test vehicle.

  • PDF

Study on the Modal Test for a Turbocharger Wheel Using Vibro-acoustic Responses (진동 방사음을 이용한 터보차져 휠 동특성 시험에 대한 고찰)

  • Lee, Hyeong-Ill;Lee, Dug-Young;Park, Ho-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-37
    • /
    • 2011
  • The modal characteristics of a compressor wheel of an automotive turbocharger have been investigated using an experimental method based on an acoustic frequency response function, p/f(${\omega}$), where p is sound pressure radiated from a structure, and f is impact force. First, a well-defined annular disc with narrow radial slots was examined to check whether the vibro-acoustic test could precisely determine natural quencies and vibration modes of structures showing that the vibro-acoustic test proposed in this paper was comparable to the conventional modal test with an accelerometer and the numerical analysis. The conventional method has been found to be inappropriate for compressor wheel because of additional mass due to the accelerometer and additional damping from the accelerometer cable alter the dynamic responses of the wheel blades. odal characteristics of the wheel have been defined using vibro-acoustic test and verified with the results from another conventional method using a laser vibrometer. Natural quencies and mode shapes of a turbocharger wheel, which can't be precisely obtained with onventional method, could be defined accurately without the additional effects from sensor and cable. Proposed method can be applied to small structures where conventional sensors and cables could generate troubles.

A Study of the Endurance Severity for Automobile Wheel Safety Standard Revision (자동차 휠 안전기준 개정 대응을 위한 내구 가혹도 검토)

  • Jang, JinHee;Heo, SungPil
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.30-34
    • /
    • 2022
  • The CFT(Cornering Fatigue test) and RFT(Radial Fatigue Test) are tests for evaluating the endurance of the disc and rim region of the wheel. In recent, automobile wheel safety standards have been revised and the applied load and target life criteria are different from existing conditions. The verification evaluation of all wheels requires a lot of time and cost. In this study, the endurance severity of each test was compared through strain-life approach by selecting 4 steel and 8 aluminum wheels.

Behavioral Characteristics of Precast Concrete Slab using Wheel Load Tester (윤하중 시험 차량을 활용한 프리캐스트 콘크리트 바닥판의 거동 특성)

  • Park, Seok-Soon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The main objective of this research is to present the behaviors of precast concrete slab under moving wheel loads. The simulated moving wheel tester and precast concrete slab were designed for this research. In particular, a comparative analysis between the structural analysis and the moving wheel load test was evaluated in connection parts, deformation, bedding layer of concrete slab panels. In the comparisons of the test results from static and moving wheel loads, the maximum deformations were similar. It should be noted that the deformation of panel 2 from the static loading test was larger than that of other panels, while the deformations of panels 1 and 3 were more noticeable than that of panel 2.

Effect of Asphalt Pavement Conditions on Tensile Adhesive Strength of Waterproofing System on Concrete Bridge Deck (아스팔트 포장 조건이 교면방수 시스템의 인장접착강도에 미치는 영향)

  • 이병덕;박성기;김광우;정해문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.299-304
    • /
    • 2003
  • In this research, eight waterproofing membranes were selected from commercial market and the tensile adhesive characteristics of the waterproofing system (WPS) on concrete bridge deck were investigated in view of various factor in asphalt pavement. Tensile adhesive strength (TAS) test of different asphalt pavement types showed that TAS of WPS under SMA (Stone Mastic Asphalt) pavement was greater than that under dense asphalt pavement. Tensile adhesive strength (TAS) of sheet membranes was improved as the compaction temperature of asphalt concrete increase, but TAS of liquid membranes were not. TAS of sheet membranes after wheel tracking test were in the order of the sites under wheel path (UWP), before wheel tracking (BWT) and nearby wheel path (NWP), Since TAS of the same WPS of UWP was higher than TAS of BWT, wheel loading had function of pressing WPS resulting in higher adhesive strength, But liquid membranes were variable on types, The feature of detached interface after T AS test showed that sheet types were all detached in between deck concrete and WPS, and liquid types were detached in between asphalt pavement and WPS,

  • PDF

Finite Element Analysis for the Prediction of Durability of Idler Wheel of Tracked Vehicle (궤도차량용 휠의 내구성 예측을 위한 유한요소 해석 기법 연구)

  • Lee, Kyoung-Ho;Roh, Keun-Lae;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.676-682
    • /
    • 2009
  • The idler wheel installed at the front side of the newly developed tracked vehicle didn't meet the durability requirement by showing the crack failure near the jointed region at the wheel during the field test. To find the crack developing mechanism we constructed finite element model for the idler wheel representing the behavior of interface between each suspension units, material properties from the material test data and actual loading conditions. This paper shows a result that maximum von Mises stress near the bolt hole on the outer rim is higher than inner idler coressponding to the actual test result and that result was reversed by adopting the reinforcement outside of the outer rim.

Wheel Off-loading test procedure and result (단차 상태 차량 윤중 감소율 시험 절차 및 결과)

  • 김진태;이원상
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.857-862
    • /
    • 2002
  • The bogie, when run on the twist track develops the wheel off-loading factor. This will be comfirmed by testing under different loading conditions and air springs inflated and deflated in all conditions. Under the most extreme twist track condition, EMU (Electrical Multiple Unit) shall not over the wheel off-loading requirement 60% defined on UIC / ORE report. This paper describes the wheel off-loading test procedure according to UIC / ORE and test result of DMRC EMU of INDIA carried out to find out to meet the requirement defined in UIC / ORE.

  • PDF

Load test of wheel-set for derailment coefficient measurement that have plane style wheel plate (평면형 차륜 형상을 가진 탈선계수 측정용 윤축의 하중시험)

  • Ham Young-Sam;Hong Jai-Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.228-233
    • /
    • 2004
  • A derailment coefficient of railway vehicle is as one of important element that estimate running safety. Derailment coefficient is ratio of lateral load/vertical load happens in contact point between wheel and rail. Lateral load increases, dangerous of derailment can rise. There are ground and vehicle to measurement method of these derailment coefficient. Method of ground is simple, but when vehicles passes data of a point, there is shortcoming that acquire locally. Curved surface style wheel shape that use so far among vehicle method in this research wishes to be not but describe about static load test of wheel-set for derailment coefficient measurement that have plane plate shape that manufacture separate way and correction result etc. to test.

  • PDF

Test of Low Noise Wheels to Reduce the Subway Noise (지하철 소음 저감을 위한 방음차륜 적용시험)

  • 유원희;김재철;한기흥;문경호
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.487-494
    • /
    • 1999
  • The object of this study is to reduce the subway noise by the low noise wheel. The vibro-acoustic reduction was predicted from the FRF difference between low noise wheel and solid wheel by experimental modal analysis. The low noise wheel and solid wheel were compared in viewpoint of car interior/exterior noise. The effect of low noise wheel on the noise of subway train of 6 vehicles was obtained. But, the application of low noise wheel must be reviewed in some aspect.

  • PDF