• 제목/요약/키워드: wheel rail contact

검색결과 224건 처리시간 0.032초

축소형 차량의 횡진동 해석 (Lateral Vibration Analysis of a Small Scale Railway Vehicle Model)

  • 이승일;손건호;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향 (The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction)

  • 양신추;김은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

고무차륜 경량전철 국산화 대차의 주행안전성 향상을 위한 동특성 해석 (An Analysis of Dynamic Characteristics for Running Safety Improvement of the Rubber Tired AGT Localization Bogie)

  • 엄범규;한병연;안천헌;강부병;이희성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1894-1904
    • /
    • 2011
  • The Light Rail Transit (LRT) System which has medium transport capacity between subway and bus(5,000-25,000 persons per hour) is the most advanced transportation system. It has many benefits, cheap construction, operational costs through driverless and flexible route planning. Also, the rubber tired AGT (K-AGT) of various LRT has a rubber wheels and side guide. The side guide type has an many advantages. but occur a vibration and friction noise through contact between guide rail and wheel. Most of point that decreased comport is vibration thorough the guide contact. In this paper, It is purpose to improve the maximum running speed of rubber tired AGT localization bogie which is currently developed from 70km/h to 80km/h. To satisfy comport index of railway vehicle that is required in performance test. we examined coefficient of bogie suspension which is designed.

  • PDF

호남고속철도 동적 안정성 요구 조건을 고려한 강합성 거더교의 변수 연구 (Parametric Study on Steel composite Girder bridges for HONAM High-Speed Railway Considering Criteria Requirement of Dynamic Response)

  • 조선규;정한욱;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1370-1378
    • /
    • 2007
  • 고속철도 교량은 고속주행 열차의 차축 주기하중 효과와 교량 고유의 동적특성에 의한 동적 증폭 효과로 인하여 구조물의 안전성에 영향을 받는다. 그리고 교량의 과도한 변형으로 인하여 차륜과 레일의 접촉력 감소, 궤도틀림 등의 윤중 변동이 일어나 열차의 주행안전성 및 승차감을 저해할 수 있다. 이러한 궤도 안전성을 확보하기 위하여 동적거동에 대한 교량상판수준의 수직가속도 제한, 차륜-레일간의 접촉과 열차주행 안전성 확보를 위한 상판 면틀림 제한, 단부 회전각 변위 제한, 차량하중에 의한 교량의 수직 처짐 제한을 반드시 만족시켜야 하며, 필수적으로 공진에 대한 검토도 이루어져야 한다. 신설되는 호남고속철도에서는 기존의 경부고속철도와 다른 콘크리트 도상을 적용하고, 궤도간격, 설계열차하중 등이 변경되어 적용되므로 새로운 동적안정성 요구조건을 적용하게 된다. 본 연구에서는 콘크리트교량에 비해 진동특성이 취약한 것으로 알려진 강합성 거더 고속철도 교량의 동적거동 분석을 수행하였다.

  • PDF

접촉 강성을 고려헌 차량-레일계의 연성 진동 해석 (A Couple Vibration Analysis of Railway Track System with Consideration of Contact Stiffness)

  • 류윤선;조희복;김사수
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.953-958
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

접촉강성을 고려한 차량-레일계의 연성진동해석 (A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness)

  • 류윤선;조희복;김사수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

차량고속주행시 차량 및 궤도거동에 미치는 궤도틀림의 영향 (Influence of track irregularity on train and track behaviours on high speed rail)

  • 이진욱;양신추;홍진완
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.307-314
    • /
    • 1998
  • In this paper, a numerical method for analyzing the interactions between train and track is presented. The effect of track irregularity on high speed running trains and track is examined by parametric studies. Two types of vertical track irregularity are considered. The first one is ideally assumed to a sine wave to investigate train and track behaviors with the change of its shape feasibly, The second one is artificially generated from PSD of track irregularity which was established from the measured data on real railways. In the track dynamic model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast divided into three layers. Then, the contact between wheel and rail is modeled by a nonlinear Hertzian spring.

  • PDF

경량전철 교량 상부구조의 열차주행에 대한 진동 및 소음 분석 (The Estimation of Structural-Borne Noise and Vibration of the Bridge under the Passage of the Light Rail Transit)

  • 여인호;정원석;김성춘;김성일
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.22-28
    • /
    • 2007
  • During the passage of the train, the railway bridge undergoes vibration and noise. The noise of railway bridge can be occurred from various sources. The wheel-rail contact, noise from machinery parts, structural-borne noise, pantagraph noise and aerodynamic noise of the train work in combination. Running train is one of the most important factors for railway bridge vibration. The repeated forces with equidistant axles cause the magnification of dynamic responses which relates with maintenance of the track structure and structure-borne noises. The noise problem is one of the most important issues in services of light rail transit system which usually passes through towns. In the present study, The vibration and noise of the LRT bridge will be investigated with utilizing dynamics responses from moving train as input data for noise analysis.

크리피지를 고려한 분산형 고속전철의 34 자유도 동적해석 (Dynamic Analysis on High-Speed EMU Based on 34-Degree-of-Freedom Model with Creepage)

  • 이래민;이필호;김주섭;구자춘;최연선;이상원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.465-470
    • /
    • 2009
  • This paper discusses the numerical study on the dynamics of the high-speed EMU by developing the 34 degrees-of-freedom (DOF) lumped parameter model including the effect of the creepage. In order to reflect the creepage, the Kalker's wheel-rail contact theory is introduced in the proposed model. The dynamic analysis using $Matlab^{(R)}$ software is conducted, and its results are compared with those from ADAMS/Rail to investigate the validity of the proposed 34-DOF lumped parameter model. It is demonstrated that the results from the numerical study are similar to those from ADAMS/Rail. In addition, the critical design parameters of high-speed EMU are examined, and the design guidelines for reducing vibration and enhancing ride quality are proposed.

  • PDF