• 제목/요약/키워드: wheel path

검색결과 142건 처리시간 0.032초

Implementation of a Mobile Robot Using Landmarks

  • Kim, Sang-Ju;Lee, Jang-Myung
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.252-255
    • /
    • 2003
  • In this paper, we suggest the method for a service robot to move safely from an initial position to n goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of n mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of n sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

  • PDF

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.

천장 전등패널 기반 로봇의 주행오차 보정과 제어 (Control and Calibration for Robot Navigation based on Light's Panel Landmark)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제20권2호
    • /
    • pp.89-95
    • /
    • 2017
  • In this paper, we suggest the method for a mobile robot to move safely from an initial position to a goal position in the wide environment like a building. There is a problem using odometry encoder sensor to estimate the position of a mobile robot in the wide environment like a building. Because of the phenomenon of wheel's slipping, a encoder sensor has the accumulated error of a sensor measurement as time. Therefore the error must be compensated with using other sensor. A vision sensor is used to compensate the position of a mobile robot as using the regularly attached light's panel on a building's ceiling. The method to create global path planning for a mobile robot model a building's map as a graph data type. Consequently, we can apply floyd's shortest path algorithm to find the path planning. The effectiveness of the method is verified through simulations and experiments.

전동 스쿠터를 위한 DGPS 기반의 위치 추정 및 반 자율 주행 시스템 개발 (Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters)

  • 송의규;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.674-684
    • /
    • 2011
  • More and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • 제6권2호
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

무인차량의 강인한 경유점 주행을 위한 베지어 곡선 기반 경로 계획 (Bezier Curve-Based Path Planning for Robust Waypoint Navigation of Unmanned Ground Vehicle)

  • 이상훈;전창묵;권태범;강성철
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.429-435
    • /
    • 2011
  • This paper presents a sensor fusion-based estimation of heading and a Bezier curve-based motion planning for unmanned ground vehicle. For the vehicle to drive itself autonomously and safely, it should estimate its pose with sufficient accuracy in reasonable processing time. The vehicle should also have a path planning algorithm that enables to adapt to various situations on the road, especially at intersections. First, we address a sensor fusion-based estimation of the heading of the vehicle. Based on extended Kalman filter, the algorithm estimates the heading using the GPS, IMU, and wheel encoders considering the reliability of each sensor measurement. Then, we propose a Bezier curve-based path planner that creates several number of path candidates which are described as Bezier curves with adaptive control points, and selects the best path among them that has the maximum probability of passing through waypoints or arriving at target points. Experiments under various outdoor conditions including at intersections, verify the reliability of our algorithm.

노면 요철을 고려한 AGT 차량의 동적 응답 해석 (Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway)

  • 송재필;김철우;김기봉
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

MR Polishing을 이용한 커버글라스의 굽힘강도 향상에 관한 연구 (A study of minimizing edge chipping of coverglass using MR Polishing)

  • 이정우;김지훈;임동욱;하석재
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.50-54
    • /
    • 2022
  • Coverglass of electronic equipments is thinner and slimmer, so the glass must have good bending strength. In these days, the polishing edge of glass is used by solid tool like grinding wheel. But solid tool leave micro crack or edge chipping in edge of glass. MR polishing is an optimal method by polishing edge of glass. MR polishing is used MR fluid that is a liquid tool. MR polishing doesn't leave tool path or residual stress, micro crack and edge chipping unlike grinding wheel polishing. In this paper, the results of grinding and MR polishing were compared and analyzed to improve bending strength by minimizing edge chipping of cover glass. It was derived that the depth and size of cracks have a significant influence on the bending strength of the glass edge. The edges of the glass using MR grinding were analyzed to have a better surface and higher bending strength than the glass using abrasive wheel grinding. It was confirmed that MR polishing had an effect on strength improvement by effectively removing cracks in the specimen.

심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법 (Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning)

  • 정순규;원문철
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

Path planning for autonomous lawn mower tractor

  • Song, Mingzhang;Kabir, Md. Shaha Nur;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • 농업과학연구
    • /
    • 제42권1호
    • /
    • pp.63-71
    • /
    • 2015
  • Path planning is an essential part for traveling and mowing of autonomous lawn mower tractors. Objectives of the paper were to analyze operation patterns by a skilled farmer, to extract and optimize waypoints, and to demonstrate generation of formatted planned path for autonomous lawn mower tractors. A 27-HP mower tractor was operated by a skilled farmer on grass fields. To measure tractor travel and operation characteristics, an RTK-GPS antenna with a 6-cm RMS error, an inertia motion sensing unit, a gyro compass, a wheel angle sensor, and a mower on/off sensor were mounted on the mower tractor, and all the data were collected at a 10-Hz rate. All the sensor data were transferred through a software program to show the status immediately on the notebook. Planned path was generated using the program parameter settings, mileage and time calculations, and the travel path was plotted using developed software. Based on the human operation patterns, path planning algorithm was suggested for autonomous mower tractor. Finally path generation was demonstrated in a formatted file and graphic display. After optimizing the path planning, a decrease in distance about 13% and saving of the working time about 30% was achieved. Field test data showed some overlap, especially in the turning areas. Results of the study would be useful to implement an autonomous mower tractor, but further research needs to improve the performance.