• Title/Summary/Keyword: wheel path

Search Result 141, Processing Time 0.025 seconds

Hybrid control of a tricycle wheeled AGV for path following using advanced fuzzy-PID

  • Bui, Thanh-Luan;Doan, Phuc-Thinh;Van, Duong-Tu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1287-1296
    • /
    • 2014
  • This paper is about control of Automated Guided Vehicle for path following using fuzzy logic controller. The Automated Guided Vehicle is a tricycle wheeled mobile robot with three wheels, two fixed passive wheels and one steering driving wheel. First, kinematic and dynamic modeling for Automated Guided Vehicle is presented. Second, a controller that integrates two control loops, kinematic control loop and dynamic control loop, is designed for Automated Guided Vehicle to follow an unknown path. The kinematic control loop based on Fuzzy logic framework and the dynamic control loop based on two PID controllers are proposed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

Path control of a mobile robot 'KMR-2' using odometer system (거리계를 이용한 이동로보트 'KMR-2'의 경로주행제어에 관한 연구)

  • 조형석;이대업;이종원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.142-147
    • /
    • 1988
  • Free-path-type guidance system does not need a hardwired path in the environment so that it gives a mobile robot a flexible path. ln this study to achieve the free-path-type guidance system for a mobile robot which is steered by the differential steering of both drive forewheels, position recognition systems are constructed using odometer system as an internal position sensor. Two odometer systems, a auxiliary wheel odometer and a 2-encoder odometer system are constructed and path following algorithms using these odometer systems are designed and experimented. PID control type is adopted in the path following algorithms.

  • PDF

A Comparative of Ground Stress with Difference of the Fixed Point Loading and Moving Wheel Loading (모형실험을 통한 고정 및 이동하중 재하 방법에 따른 노반 변형거동 비교)

  • Choi, Chan-Yong;Shin, Eun-Chul;Eum, Ki-Young;Shin, Min-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • In this paper, it was compared the characteristics of the stress and settlement that occur from a track on the ground using a model test and has quantitatively analyzed the difference based on stress path and effect of the rotation of principal stress. Under identical roadbed conditions, the settlement generated by moving wheel loads were found to be 6 times and 3 times larger than that from static loads and cyclic loads, respectively. The deviator stress affecting shear deformation and the length of stress path generated by moving loads were twofold or greater increase than those by static loads. Furthermore, the stress path generated by moving loads was approached more closely to Mohr-Coulomb failure criteria compared to that by static loads. Also, it was found that ballasted track was occurred about 60% of maximum stress at $40^{\circ}$ of the rotation angle of principal stress and was affected with rotation of principal stress with moving wheel loading condition.

Cabin Noise Reduction of wheel Loader through the Shape Optimization of Tail-Pipe (테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구)

  • Ko, Kyung-Eun;Joo, Won-Ho;Kim, Dong-Hae;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.686-689
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

  • PDF

Cabin Noise Reduction of Wheel Loader through the Shape Optimization of Tail-Pipe (테일 파이프 형상 개선을 통한 휠로더 캐빈 소음 저감 연구)

  • Ko, Kyung-Eun;Joo, Won-Ho;Kim, Dong-Hae;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1238-1243
    • /
    • 2006
  • In a wheel loader, the tail-pipe is installed at the exhaust tube of muffler for the reduction of exhaust noise and the cooling of engine room, however, the cabin noise level can be largely increased due to the tail-pipe. In this paper, to grasp and reduce the cabin noise, a series of noise and vibration tests were carried out in addition to numerical simulations. As a result, the transmission path of exhaust noise toward the cabin was exactly identified and the improved shape of tail pipe, that can reduce the cabin noise, was derived through various numerical simulations and real tests.

Robotic rim deburring technique in car wheel (로보트 이용 자동차 휠의 림 디버링)

  • 박종오;전종업;조의경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1144-1148
    • /
    • 1991
  • The problems occurred when developing a automatic wheel deburring system are to make effective flexibility in model change and the irregularity of the position/shape of the burr, to select optimal robotic manufacturing process and to develope optimal end effector. The locations where burr exists are on flange, rim and spoke. Here will be discussed the optimal solution for the removal of rim burr by using robot. The research can be summarized as the automatic robot path generation by recognizing rim contour and automatic deburring process technique. Various rim contour data is generated automatically when the sensor which is fixed to robot is moving with the parallel motion to the wheel center axis and this generated data is transferred to the data storage system and converted to the robot path data. The robotic tool system which is suitable to the rim deburring process is developed by integrating tool, compliance function and sensor. And factory automation system controlled by robot controller and PC is developed. This system shows good productivity and flexibility.

  • PDF

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

Kinematics and Inverse Kinematics in Unmanned Bicycle System (무인자전거 시스템의 정역학 및 역정역학)

  • Ham, Woon-Chul
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Bicycle is one of convenient transportation system. In this paper, we derive a more precise kinematics of bicycle system compared with other ones which were suggested by other researchers. In the derivation of kinematics we adopted a physical concept called virtual wheel. We also propose an algorithm for deriving inverse kinematics of a bicycle system. In this paper, the meaning of inverse kinematics is to find the time functions of steering angle and driving wheel speed for a given desired path trajectory. From the computer simulation, we show the validity of our proposed algorithm for inverse kinematics of bicycle system.

  • PDF

H2 Control of Wheel Chair Robot with Inverse Pendulum Control

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.89.2-89
    • /
    • 2001
  • Wheel chair bound persons need assistance since there are many steps or curbs or other obstacles blocking their path in the roadways and walkways. Although a step may be small, it may be very difficult for such a person to climb over it. Therefore, we are proposing a power assist wheel chair robot that enables a wheel chair bound person to climb over steps up to about 10 centimeters in height without assistance from others. By using the proposed wheel chair robot, a user can maintain inverse pendulum control after raising its front wheels Then, a user can move forward to the step maintaining the inverse pendulum control, and can climb over the step using motor force of a rear wheel shaft ...

  • PDF

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF