• Title/Summary/Keyword: wheel load

Search Result 529, Processing Time 0.026 seconds

Forest Soil Characteristics and their Effects on the Trafficability of Logging Vehicles (산림토양(山林土壤) 특성(特性)이 집재차량(集材車輛)의 주행성(走行性)에 미치는 영향(影響))

  • Kim, Ki Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.255-265
    • /
    • 1999
  • This study deals with forest soil characteristics and their effects on the trafficability of logging vehicles. The study area is the national experimental forest located in Kwangnung. This site has 20m length and is equally divided by 5 surveying ranges with 4m width, on which a tractor(FIATAGRI) attached with logging boogie can drive in 4 driving types, namely 1time-return unload, 1time-return with load of 780-790kg weight of 3 logs, 5 and 10times-return with same load. After one driving type on all surveying ranges, the soil hardness is surveyed 5 times with 3 several type tools, SHM-1 type, lang penetrometer(L-PNTM), and clegg impact soil tester(CIST). A disturbed degree of cover vegetation and sliding conditions of vehicle are also observed. As results, the soil type of the test site was SC by USCS and dry brown forest soil. The cover vegetation is gotten trambled under driving after 3-5 times-return, shrubs leaves are fully fallen and their bark are peeled, and after 10 times-return the cover vegetations were nearly disappeared. The test vehicle has neither slided nor was overthrown. The wheel tracks in the 1-3 ranges, of which unit weight(gd, gt) is high and soil moisture content(MC) is low, were only 1-2cm deep, but those in the 4-5 ranges, of which the gd, gt is low and the MC is high, were 5-7cm deep. In the soil hardness test, which was established in 5 test ranges by types of driving, the more driving times, the higher the hardness. The soil hardness surveyed by L-PNTM has changed slowly and that surveyed by SHM-1 type has risen sharply. In the ranges with higher specific gravity(Gs), higher unit weight, lower MC and higher liquid limit(LL) and plasticity index(PI) was the soil hardness high and the trafficability was good. In the ranges with opposite conditions, also in the ranges of the lower soil hardness, the trafficability must be not good, because the wheel track may be deep. The results from CIST attached with 4kg hammer was not better than expected. So it is recommended to use CIST with 2.5kg or 0.5kg hammer.

  • PDF

MICROLEAKAGE OF MICROFILL AND FLOWABLE COMPOSITE RESINS IN CLASS V CAVITY AFTER LOAD CYCLING (Flowable 및 microfill 복합레진으로 충전된 제 5급와동에서 load cycling 전,후의 미세변연누출 비교)

  • Kang, Suk-Ho;Kim, Oh-Young;Oh, Myung-Hwan;Cho, Byeong-Hoon;Um, Chung-Moon;Kwon, Hyuk-Choon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Low-viscosity composite resins may produce better sealed margins than stiffer compositions (KempScholte and Davidson, 1988: Crim, 1989). Plowable composites have been recommended for use in Class V cavities but it is also controversial because of its high rates of shrinkage. On the other hand, in the study comparing elastic moduli and leakage, the microfill had the least leakage (Rundle et at. 1997) Furthermore, in the 1996 survey of the Reality Editorial Team, microfills were the clear choice for abfraction lesions. The purpose of this study was to evaluate the microleakage of 6 compostite resins (2 hybrids, 2 microfills, and 2 flowable composites) with and without load cycling. Notch-shaped Class V cavities were prepared on buccal surface of 180 extracted human upper premolars on cementum margin. The teeth were randomly divided into non-load cycling group (group 1) and load cycling group (group 2) of 90 teeth each. The experimental teeth of each group were randomly divided into 6 subgroups of 15 samples. All preparations were etched, and Single bond was applied. Preparations were restored with the following materials (n=15) : hybrid composite resin [Z250(3M Dental Products Inc. St. Paul, USA), Denfil(Vericom, Ahnyang, Korea)], microfill [Heliomolar RO(Vivadent, Schaan, Liechtenstein), Micronew(Bisco Inc. Schaumburg, IL, USA)], and flowable composite[AeliteFlo(Bisco Inc. Schaumburg, IL, USA), Revolution(Kerr Corp. Orange, CA, USA)]. Teeth of group 2 were subjected to occlusal load (100N for 50,000 cycles) using chewing simulator(MTS 858 Mini Bionix II system, MTS Systems Corp. Minn. USA). All samples were coated with nail polish 1mm short of the restoration, placed in 2% methylene blue for 24 hours, and sectioned with a diamond wheel. Enamel and dentin/cementum margins were analyzed for microleakage on a sclale of 0 (no leakage) to 3 (3/3 of wall). Results were statistically analyzed by Kruscal-Wallis One way analysis, Mann-Whitney U-test, and Student-Newmann-Keuls method. (p = 0.05) Results : 1. There was significantly less microleage in enamel margins than dentinal margins of all groups (p<0.05) 2. There was no significant between six composite resin in enamel margin of group 1. 3. In dentin margin of group 1, flowable composite had more microleakage than others but not of significant differences. 4. there was no significant difference between six composite resin in enamel margin of group 2. 5. In dentin margin of group 2, the microleakage were R>A =H=M>D>Z. But there was no significant differences. 6. In enamel margins, load cycling did not affect the marginal microleakage in significant degree. 7. In enamel margins, load cycling did affect the marginal microleakage only in Revolution. (p<0.05).

A Fundamental Approach for Developing Deformation Strength Based on Rutting Characteristics of Asphalt Concrete (소성변형과의 상관성에 근거한 아스팔트 콘크리트의 변형강도 개발을 위한 기초연구)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Jun-Eun;Choi, Sun-Ju
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.23-39
    • /
    • 2002
  • This study dealt with developing a new approach for finding properties which might represent rut resistance characteristics of asphalt mixture under static loading. Two aggregates, a normal asphalt (pen 60-80) and 5 polymer-modified asphalts were used in preparation of 12 dense-graded mixtures. Marshall mix design was used in determination of OAC and each mixture at the OAC was prepared for a newly-developed Kim test on Marshall specimen (S=10cm) and gyratory specimen (S=15cm), and for wheel tracking test. Kim test used Marshall loading frame and specimens were conditioned for 30min at $60^{\circ}C$ before loading through Kim tester an apparatus consisting of a loading column and a specimen and column holder Diameter (D) of column was 3cm and 4cm with each column having different radius (r) of round cut at the bottom. The static load was applied at 50mm/min in axial direction of the specimen, not in diametral direction. The maximum load ($P_{max}$) and vertical deformation (y) at $P_{max}$ point were obtained from the test. A strength value was calculated based on the $P_{max}$ r, D and y by using the equation $K_D = 4P_{max}/{\pi}(D-2(r-\sqrt{2ry-y^2}))^2$ and is defined as the deformation strength ($kgf/cm^2$). The values of $P_{max}$/y and $K_I=K_D/y$ were also calculated. In general the leading column diameter and radius of round cut were significant factors affecting $K_D$ and $P_{max}$ values while specimen diameter was not. The statistical analyses showed the $K_D$ had the best correlation with rut depth and dynamic stability. The next best correlation was found from $P_{max}$ which was followed by $P_{max}$/y and $K_I$ in order.

  • PDF

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X (HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구)

  • Kang, Yun-Suk;Um, Ki-Young;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4068-4076
    • /
    • 2013
  • The wheel-rail interaction forces are influenced by the velocity of vehicle, wheel load, alignment (curve radius, cant etc). For the safety of track structure, it is required to evaluate the influences for track and influential factors. Recently, the HEMU 430-X, which was developed by Next Generation High-Speed Rail Development R&D Project, achieved 421.4km/h in a test run of Daegu.Busan section of the Gyeongbu high speed rail on March in 2013. In the case of additional speed-up test on Test-Bed Section(Gongju.Jeongeup: KP 100~128km Osong starting point), the analysis of track forces is required for outer rail by the increase of dynamic force and centrifugal force of vehicle. In this paper, the vehicle speed variation on HSL line is evaluated by TPS analysis considering the tractive effort of HEMU 430-X, tested running resistance and alignment of Honam HSR. And the track forces are evaluated by centrifugal force and impact factor on curved track.

Durability Evaluation on the Air-Braking Release Failure Proof Valve of Cargo Train (화물열차 공기제동 완해불량 방지 밸브의 내구성 평가)

  • Lee, Jun-Ku;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.32-38
    • /
    • 2020
  • Cargo train braking uses the pressure changes in the air braking pipe to operate the braking tightening and releasing service repeatedly. Air-braking release failure means partial braking caused by a failure of the variable load valve after the driver handling the brake release. This phenomenon causes wheel flaws while driving a wagon, resulting in wheel breakage or train derailment. This study developed the air-braking release failure proof valve considering the technical requirements of the railway operation corporations. In addition, a durability test of the valve was carried out using a braking performance simulator, and its operating performance was evaluated from the pneumatic history under cyclic braking conditions. The warranty life of this valve was assessed by performing 160,000 cycles of testing of 12 prototypes in accordance with the zero-failure test method, considering the number of braking cycles while driving the wagon. During the durability test, the pneumatic input time, output time, and release velocity were almost constant. The warranty life of this valve was 59,860 times the 95% confidence level, which means that it can be operated without trouble for four years when the valve is installed in the bogie of the wagon.

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.