• Title/Summary/Keyword: wet stiffness

Search Result 64, Processing Time 0.027 seconds

Representation of Curl Exaggeration, Cohesion, Adhesion and Stiffness in Wet Curly Hair

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.77-84
    • /
    • 2023
  • Simulating the cohesion and stiffness of wet hair or fur in physics-based simulations is one of the most challenging problems. Wet hair or fur is characterized by bunching and stiffening at the ends, a phenomenon that can be seen in wet animal fur or hair. In addition, when wet hair interacts with a solid, adhesion occurs, but this problem becomes difficult to solve due to the different distribution and balance of forces in curly hair. In traditional methods, wet hair is represented by hand or by using static hairstyles to represent wet curls and hair. However, how to depict the details of wet curly hair has not been actively researched. In this paper, we propose a new algorithm to efficiently model the curl exaggeration, cohesion, adhesion, and stiffness of wet curly hair. The proposed method efficiently simulates cohesion and integrates stiffness constraints with curl dynamics to reliably control hair elasticity.

A Study on Tire Labeling Performance for Tire Stiffness Design (타이어 기본강성 설계에 따른 타이어 라벨링 성능변화 연구)

  • Kang, Young Kyu;Kim, GunHo;Jang, InSung;Oh, YagJeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.265-267
    • /
    • 2013
  • Tire labeling is an important issue to reduce $CO_2$ and to secure the safety of tire/vehicle on wet road. A basic study on the effects of tire basic stiffness design on tire labeling performance has been done through experimental test. The pass-by noise is affected by tire structural design. The tire with lower side part stiffness and lower tread part stiffness has the lowest PBN level and the best wet grip. And the tire with higher tread part stiffness and higher side part stiffness has the better RR performance. Also it is observed that the trade-off between RR and wet grip exists for various tire stiffness design.

  • PDF

Efficient Treatment of Clumping and Stiffness for Wet Hair and Fur Simulation (젖은 헤어와 털 시뮬레이션을 위한 효율적인 응집력과 강성 처리)

  • Kim, Jong-Hyun;Lee, Jung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Simulating the clumping and stiffness of wet hair or fur is a challenging problem. The dynamics of wet hair or fur is characterized by the clumping and stiffness at the tip, which is easily seen in running animals or headbanging scenes. Existing methods address these phenomenon within pre-set scenarios. But there is no consensus on the method of depicting the details of wet hair. Hence, the present paper proposes a new method of modeling the clumping and stiffness of wet hair or fur. Previous studies focused on modeling the absorption of water into hair or fur, whereas this paper highlights a realistic simulation of wet hair. Unlike dry hair strands, wet hair strands adjacent to one another are subjected to the clumping force and gather together, while at the same time becoming stiff as the saturation of water increases. The proposed method builds on the surface tension model based on SPH (smoothed particle hydrodynamics) to simulate the clumping force and to adjust the hair elasticity by giving stiffness constraints. The present method enables a realistic simulation of wet hair by maintaining the clumping force of the wet hair even in dynamic motions, and by simulating the stiffness of hair in line with water saturation.

Development of On-line Bending Stiffness Tester (2) - Lab experiment - (종이 휨강성 자동 측정방식의 개발과 그 이용 (2) - 실험실 측정 -)

  • Seo, Yung-Bum;Jung, Suk-Myun;Jung, Tae-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • A simple method of on-line stiffness measurement using the wrinkling behavior of paper web between two rollers was presented. The theory and the equation were presented, and lab and mill tests were executed. We called the stiffness measured by Taber tester as 'Taber stiffness', and by tension wrinkling measurement as 'wrinkle stiffness', respectively. Lab experimental results showed Taber and wrinkle stiffness are almost equivalent. In the mill experiment, we could measure the stiffness in the wet state and in the dry state. The dry wrinkle stiffness was close to the taber stiffness, but the wet wrinkle stiffness was much lower than the corresponding taber stiffness.

Properties and UV-cut effects of cotton fabric treated with $TiO_2$/PEG ($TiO_2$/PEG처리 면직물의 물성과 자외선 차단성능)

  • 김정진;장정대
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.223-228
    • /
    • 2002
  • Cotton fabric was treated with $TiO_2$-PEG600 dispersion colloid by pad-dry-cure and wet-fixation process to improve the performance properties as well as UV-cut effect. As the concentration of $TiO_2$/PEG increased tensile strength, crease resistance, stiffness of treated cotton fabric increased. Application of wet-fixation method provided a further improvement in tensile strength, crease resistance, stiffness of treated cotton fabric. Cotton fabric treated with $TiO_2$/PEG was more efficient in UV-cut property than untreated cotton.

Preparation of Low Density Water Glass Based Silica Gels by Conventional Drying

  • Einarsrud, Mari-Ann;Elin Nilsen
    • The Korean Journal of Ceramics
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • To reduce shrinkage and the possibility of fracture during ambient pressure drying, it is of great importance to increase the strength and stiffness of the wet gels. In this paper is presented the strengthening and stiffening of wet silica gels prepared from sodium silicate (water glass) as well as properties of the corresponding xerogels. By washing gels containing different initial silica contents in water solutions at elevated pH, a maximum in shear modulus of ~4 MPa was obtained. The maximum stiffness enabled xerogels with bulk density of 0.28g/$\textrm{cm}^3$ to be made regardless of silica content and washing conditions. However, by aging the wet gels in a solution providing fresh monomers to the gel network, a shear modulus of 20 MPa was obtained after 27h. By this method monolithic xerogels with a density down to ~0.2g/$\textrm{cm}^3$ was prepared. The results are compared to alkoxide based gels.

  • PDF

Analysis of physical properties for the development of non-woven fabric sheet for mask pack (마스크 팩 부직포 시트 개발을 위한 기본특성 분석)

  • Choi, Sola;Kwon, MiYeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2022
  • This study aims to analyze the physical properties of non-woven fabric sheets, which continue to grow in the cosmetic market. Non-woven fabric sheets were used as specimens, and a total of 17 samples were analyzed. To evaluate the physical properties of the non-woven fabric sheet, the weight, tensile strength, surface properties, free swell absorption, and wet stiffness were tested. Through the results itw was determined that non-woven fabric sheets for mask packs should be manufactured considering fiber arrangement so that the weight is 40 g/m2, and the tensile strength should be maintained near 12 kgf. In addition, it was confirmed that the material selection and process conditions should be adjusted so that the free swell absorption is at least 8 g/g, and the wet stiffness is 200 mg. Therefore, since the non-woven fabrics for the mask sheets can be used in various products depending on fabric composition, this study will be expected to be basic data for the continuous growth of the sheet-type mask packs coming to market.

Effect of filler loading on the wet end dewatering and paper properties (충전제가 습부 탈수 및 종이 물성에 미치는 영향)

  • Won, Jong-Myoung;Kim, Heung-Bae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.33-38
    • /
    • 2010
  • The effects of fillers on the wet end dewatering and paper properties were investigated in order to confirm the possibility that the fillers can be used as a means for saving energy in papermaking process. The performance of GCC, PCC and talcs were evaluated. The dewatering in wire and wet press was improved by the increase of filler addition, but it was observed that the dewatering behavior was depended by the filler characteristics. PCC was superior to other fillers in the bulk, opacity, air permeability and stiffness while the lowest tensile and burst index were obtained. We found that the response on the wet end dewatering and paper properties were affected greatly by the filler characteristics including particle shape and size.

Application Technology of Environmental-friendly Starch-based Biobinder and Synthesized Binder in order to Substitute SB Latex for Paper Coating (1) - Application of Substitute Binder for Pre-coating Layer - (SB latex 대체용 친환경 전분계 바이오바인더 및 합성바인더의 적용 기술 개발 (제1보) - 대체용 바인더의 Pre-coating 적용 -)

  • Lee, Yong Kyu;Kim, Sun-Goo;Won, Jong Myoung;Kim, Young-Hun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.134-140
    • /
    • 2015
  • This study was carried out to evaluate whether EVAc, acryl latex and biobinder could substitute the part of SB latex for pre-coating color formula or not. Different coating colors prepared through the substitution of 30% SB latex with EVAc, acryl latex, and biobinder were applied for pre-coating layer. 100% SB latex is used as a binder for top coating color. The optical properties, gloss, roughness, stiffness, dry- and wet-pick strength were measured. There were no significant differences in the brightness, whiteness, opacity, roughness, ink set-off and gloss of paper coated with 5 different coating colors. However the stiffness, dry- and wet-pick strength were somewhat lower than those of conventional coating color which 100% SB latex was used as a binder. Although the part of SB latex could be substituted with EVAc, acryl latex and biobinder without sacrificing the qualities of coated paper. Further researches on the improvement of stiffness, dry- and wet-pick strength, and the optimization of rheology of coating color in order to improve the qualities of coated paper are strongly recommended.

Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis (건조수축 해석을 통한 종이의 벌크 및 강직성 향상)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.