• Title/Summary/Keyword: wet etching process

Search Result 214, Processing Time 0.025 seconds

Improvement of Photo Current Density in Dye-sensitized Solar Cell by Glass Texturing

  • Nam, Sang-Hun;Suk, Won;Yang, Hee-Su;Hwang, Ki-Hwan;Jin, Hyun;Seop, Kyu;Hong, Byungyou;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.423-423
    • /
    • 2012
  • Recently, many researchers made progress in various studies improving the efficiency of dye-sensitized solar cell. In this paper, we used glass textured by wet-chemical etching process for improvement of photocurrent density in dye-sensitized solar cells. This is owing to increase coefficient of light utilization. Consequently, DSSC using the textured glass exhibit a Jsc of 9.49 mA/$cm^2$, a Voc of 0.73 V and a fill factor (FF) of 0.67 with an overall conversion efficiency of 4.64. This result showed increasing of 20% current density and 16% conversion efficiency using the textured glass. These results suggested that glass texturing was very effective in controlling the light-scattering properties into the photovoltaic cell.

  • PDF

A study on inhomogeneity of YBCO Coated Conductors using Low-temperature Scanning Laser Microscopy (LTSLM) (저온 주사 레이저 현미경(LTSLM)을 이용한 YBCO 초전도 선재의 불균질성 연구)

  • Park, S.K.;Kim, J.M.;Lee, S.B.;Kim, S.H.;Kim, G.Y.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Low temperature scanning laser microscopy (LTSLM) can be used for a two-dimensional display of bolometric response arising from the localized excitation of a sample by the focused laser beam. In this study, the distribution of critical temperature ($T_c$) and critical current density ($J_c$) in YBCO coated conductor were analyzed using LTSLM. For improving the temperature stability, we have modified the system into a double-shielding type. Through the modification, the temperature stability was successfully improved from ${\pm}10mK\;to\;{\pm}2mK$. The superconducting properties of YBCO coated conductors were measured for the sample of a narrow bridge type using wet etching process. The spatial non-uniformity of the ac voltage response, ${\delta}V(x)$, which is proportional to ${\partial}\rho(x,J_B)/{\partial}T$ in the transition temperature region could be observed and displayed in a two-dimensional image.

  • PDF

Fabrication and Testing of Glass Bipolar Plates for Application on Micro PEM Fuel Cells (마이크로 연료 전지를 위한 유리 바이폴라 플레이트의 제작 방법 및 성능 평가)

  • Jang, Bo-Sun;Lee, Jong-Kwang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.289-292
    • /
    • 2009
  • The fabrication method of glass bipolar plates for micro PEM fuel cell application has been established and performance evaluation has been carried out. The advantages of glass bipolar plates for micro PEM fuel cells are light weight, high chemical resistivity, and easy manufacture. The MEMS fabrication process of anisotropic wet etching, thermal & UV bonding along with metal layer deposition has been introduced. From performance evaluation, it was shown that the micro fuel cell with a metal layer deposited on the reactive area yielded higher power density than the one without it. But both power densities of the two cases showed out to be adequate with the current status of micro fuel cell technology.

  • PDF

Nanofilm Transfer Methods and Interfacial Fracture Mechanics (나노박막 전사 방법 및 계면 파괴 역학)

  • Kang, Sumin;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.9-19
    • /
    • 2020
  • Transferring of functional nanofilms onto target substrates is a cornerstone to developing nanofilm-based nextgeneration applications. In this work, we provide a brief review of recent advances on nanofilm transfer methods by categorizing them into the following three methods: wet-etching transfer, electrochemical delamination, and mechanical transfer. Furthermore, the mechanical transfer method, which is regarded as a promising technology owing to its facile, substrate recyclable, and widely applicable process, is overviewed by focusing on fracture mechanics approaches. Finally, the perspectives and challenges for future development of the mechanical transfer method are discussed.

Highly Conductive and Transparent Electrodes for the Application of AM-OLED Display

  • Ryu, Min-Ki;Kopark, Sang-Hee;Hwang, Chi-Sun;Shin, Jae-Heon;Cheong, Woo-Seok;Cho, Doo-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Lee, Jeong-Ik;Chung, Sung-Mook;Yoon, Sung-Min;Chu, Hye-Yong;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.813-815
    • /
    • 2008
  • We prepared highly transparent and conductive Oxide/Metal/Oxide(OMO) multilayer by sputtering and developed wet etching process of OMO with a clear edge shape for the first time. The transmittance and sheet-resistance of the OMO are about 89% and $3.3\;{\Omega}/sq.$, respectively. We adopted OMO as a gate electrode of transparent TFT (TTFT) array and integrated OLED on top of the TTFT to result in high aperture ratio of bottom emission AM-OLED.

  • PDF

Development of Ignition System for MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 점화 시스템 개발)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.91-94
    • /
    • 2007
  • The fabrication and firing test of the ignition system for a micro solid propellant thruster are described in the present paper. Pt igniter coil was patterned on the glass membrane that was fabricated by the wet etching process. The thickness of Pt layer was $2000{\AA}$ and the width of igniter pattern was $40{\mu}m$. The thickness and diameter of glass membrane were $15{\mu}m$ and 1 mm, respectively. Ignition test was performed. Successful ignition of HTPB/AP propellant was obtained with an ignition delay of 1.6 s at an input voltage of 12 V. The ignition energy was estimated to be 1.4 J.

  • PDF

Efficiency Improvement of MLA (Micro Lens Array) using Aperture (Aperture를 이용한 MLA의 효율 개선)

  • Seo, Hyun-Woo;Nam, Min-Woo;Oh, Hae-Kwan;Ahn, Hyo-Chan;Kim, Tae-June;Wei, Chang-Hyun;Lee, Kee-Keun;Yang, Sang-Sik;Song, Yo-Tak
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.91-94
    • /
    • 2011
  • This paper presents light transmission efficiency by optical adhesive thickness between MLA and aperture layer and by aperture hole size. The gap between MLA and Aperture layer is adjusted by the shim. The more optical adhesive thickness increases, the better light transmission efficiency increases up to a point. After that, the light transmission efficiency decreases because stray lights cannot transmit through the aperture layer owing to cut-off by aperture layer. And as a result of light transmission efficiency with changing aperture hole size, the light transmission efficiency is proportional to area of aperture hole. The more specified process is made, the better data and sample will be got.

Studies of Printing Head Fabrication Process For Mano Metal Printing System (메탈 인쇄용 압전 헤드 제작 프로세스 연구)

  • Yoo, Young-Seuck;Kim, Young-Jae;Sim, Won-Chul;Park, Chang-Sung;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1623-1624
    • /
    • 2006
  • It is a paper for design, manufacture and estimation of industry inkjet head. Simulations for Actuator, Ink flow and Ejection are executed for securing design ability. Relations between droplet and properties of ink are explained closely through simulation for nozzle. Actually, two silicon plates are made by dry and wet etching and directly bonded. PZT materials is attached on the bended ink flow part and cut to $540{\mu}m$ interval by dicing saw. Actuator was seen variation within 10% between simulation and actual head. Through the ejection estimation, it is shown that stabilized driving voltages change according to viscosity and surface tension of metal ink. Using the metal ink of viscosity of 4.8 cps and surface tension of 0.025 N/m, it is possible to eject the stable droplets with 5m/s, 20 pl, 5 kHz.

  • PDF

Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer ($Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성)

  • Noh Dong-Sun;Kim Dea-Eun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing (잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가)

  • Choi, Soo-Hong;Jung, Jung-Kyu;Kim, In-Young;Jung, Hyun-Chul;Joung, Jae-Woo;Joo, Young-Chang
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.