• Title/Summary/Keyword: wet curing

Search Result 107, Processing Time 0.025 seconds

A free standing metal structures for MEMS switches (MEMS switch 응용을 위한 free standing 금속 구조물에 관한 연구)

  • Hwang, Hyun-Suk;Kim, Eung-Kwon;Kang, Hyun-Il;Lee, Kyu-Il;Lee, Tae-Yong;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.187-188
    • /
    • 2005
  • In this paper, big free standing metal structures for electrostatic MEMS switches are easily fabricated using photoresist sacrificial layer. The entire process sequence, through the removal of the sacrificial layer, is kept below 150 $^{\circ}C$ to avoid curing problem of photoresist sacrificial layer. Metal structure is fabricated by thermal evaporator and a self test electrode is fabricated underlying metal suspended structure for testing by electrostatic force. The new wet release process is considered using methanol rinse, general wet release process cause stiction problem by capillary force during drying, and the yield is dramatically improved than previous wet release process using DI water rinse. The fabrication becomes much simpler and cheaper with use of a photoresist sacrificial layer.

  • PDF

Strengths and Corrosion-Inhibition of Epoxy-Modified Mortars Contaning Nitrite-Type Hydrocalumite (에폭시수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 강도 및 방청성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.53-55
    • /
    • 2013
  • Nitrite-Type hydrocalumite (calumite) is a material that can provied a self-corrosion inhibition function to the reinforce concrete. In this study, bisphnol A·F type epoxy-midified mortars without hardner contaning calumite is prepared with various polimer-binder ratios, calumite contents and tow types of curing condition, and tested for flexural and compressive strength tensile strength and corrosion-inhibition. As a result, in the case of wet/dry curing condition, strengths of bisphnol A·F type epoxy-modified mortars without hardener contaning calumite is inclined to decrease with increasing of polymer-binder ratio and calumite content. However, dry cured specimens are slightly improved by using bisphnol A·F type epoxy resin. Finally, regardless of polymer-binder ratios and calumite contents, corrosion-inhibition of bisphnol A·F type epoxy-modified mortars without hardener containing calumite is superior than that of unmodified mortar.

  • PDF

Durable Press Finish of Cotton Fabric Using Malic Acid as a Crosslinker

  • Kim, Byung-Hak;Jang, Jinho;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • It has been considered that malic acid, $\alpha$-hydroky succinic acid, could not form crosslinks in the cellulosic materials unless activated by other polycarboxylic acids such as butanetetracarboxylic acid or citric acid because there are only two carboxylic acids per molecule available fur the formation of one anhydride intermediate. However we found that the dicarboxylic malic acid with sodium hypophosphite catalyst without the addition of other crosslinkers was able to improve wrinkle resistance of cotton up to $294^{\circ}$(dry WRA) and $285^{\circ}$ (wet WRA), which is a measure of crosslinking level in cotton. $^1$H FT-NMR, FT-IR and GPC analysis indicated the in-situ formation of an trimeric $\alpha$, $\beta$-rnalic acid with a composition of 1:3 through the esterification between hydroxyl group and one of carboxylic groups in malic acid during curing. The crosslinking of cotton was attributed to the trimeric $\alpha$, $\beta$-malic acid, a tetracarboxylic acid, which can form two anhydride rings during curing. The influence of crosslinking conditions such as concentrations of malic acid and catalyst, pH of the formulation bath, and curing temperature were investigated in terms of imparted wrinkle resistance and whiteness. The addition of reactive polyurethane resin in the formulation slightly increased the mechanical strength retention of crosslinked fabric coupled with additional increase in wrinkle resistance.

  • PDF

A Study on the Fashion Accessary Product Development by Use of Korean Traditional Hanji (Part I) -Physical Properties of the Korean Traditional Paper(Hanji) Treated with Silcone resin- (전통한지를 활용한 패션 악세서리 상품개발 (제1보) -실리콘 수지로 처리된 한지의 물성변화-)

  • Kim Eun-Ah;Ryu Hyo-Seon;Kim Yong-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.3 s.151
    • /
    • pp.481-486
    • /
    • 2006
  • There are attempts to utilize Hanji for apparel material, but, the reason that the strength and durability of Hanji decrease to a great extent in the wet condition, restricts the usability of Hanji. In order to improve the resistance against water, Hanji was treated with silicone type water repellent agents. The treatment was carried out by conventional pad-dry-cure method. The optimum treatment condition was obtained by varying the concentration of repellent agent, curing temperature and time. Water repellency was tested by spray rating method. Wet and dry tensile strength, tearing resistance and abrasion resistance were examined after the treatment. Flexural stiffness and wrinkle recovery angles of hanji were also measured. In result, the optimum condition of treatment was at resin concentration of 40g/l, catalyst concentration of 20g/l(half of resin concentration), curing temperature of 160$^{circ}C$, curing time of 120 sec. Flexural stiffness of Hanji was hardly increased and wrinkle recovery angle of Hanji was improved a little by resin treatment. After the treatment, in dry condition, tensile strength and tearing resistance were little changed but abrasion resistance was improved. In wet condition, tensile strength, tearing strength and abrasion resistance were improved.

Recent Trend for Performance Improvement of Epoxy Resin (에폭시 수지의 물성 향상을 위한 최근 동향)

  • Jang, Jyong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.301-310
    • /
    • 1991
  • Epoxy resins have been widely used for many applications along with good processibility. However, epoxy resin systems have poor hot/wet performance properties and brittleness after resin curing and have limited to apply for environmental resistant materials. In order to improve the toughness of epoxy resin, this review article deals with incorporation method of rubber and high performance thermoplastics into the matrix resin. In addition, molecular design of epoxy resin and modification of thermoplastic have been introduced for improving hot/wet properties of epoxy resin.

  • PDF

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

Study for Synthesis and Properties of Polyurethane Based on Polyester Polyol with Varying Hydroxyl Values for Automotive Pre-painted Metal Sheet Applications (자동차 선도장 강판용 폴리에스테르 폴리올 기반 폴리우레탄의 합성과 물성에 대한 연구)

  • Kang, Choong Yeol;Lee, Jae Young;Noh, Seung Man;Nam, Joon Hyun;Park, Jong Myung;Jung, Hyun Wook;Yu, Sang Soo
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • The roll coating process is well-known for completely replacement coating system with an existing wet paint process for automotive which has low productivity and is not environment-friendly process. It is very important to evaluate the curing behavior, corrosion resistance and processing property as well as rheological behavior in order to realize a film flexibility and hardness simultaneously. In this study, we have synthesized the polyester resin modified with hydroxyl values and molecular weight to apply the pre-painted system, and then evaluated the curing behavior, deep drawing, tensile strength and rheological properties. It was observed that N-0375-40 of 40 (mg KOH/mol) hydroxyl values showed the most suitable for flexibility, film hardness, and curing behavior.

Studies on Finshing of Silk Fabric with Urea Formaldehyde Resin. (견직물에 대한 요소수지가공에 관한 연구)

  • 유영철
    • Journal of Sericultural and Entomological Science
    • /
    • v.27 no.2
    • /
    • pp.47-53
    • /
    • 1985
  • The studies on the reaction of Urea-Formaldehyde(UF) resin with silk fabric were studied, and the final results summarized as below; 1. The pH and UF molar ratio for preparing liquid resin was found at pH 4-5 and UF molar ration 1:2 and above. 2. The weight gains were increased with respect to increase in concentration of UF resin solution, while moisture regains were decreased. 3. The weight gains were significant high in case of wet pick up 70%. 4. The weight gains were increased with respect to increase in curing temperature and the amount of catalyst((NH4)2SO4) found was 2.5% on the weight of Dimethylol urea and Hydrochloric acid was 1%, Tartaric acid was 10%. 5. The effect of different catalyst on wash fastness of UF resin was good where as in case of acidic catalyst was significantly high. 6. The weight gains with different catalyst was high where as in case of potential acid catalyst was significantly high. 7. The crease recovery are increased with the increase of the weight gain of silk fabric and also stiffness are increased.

  • PDF

Evaluation on the Applicability of Recycled Fine Aggregate to Precast Concrete Products (순환잔골재의 콘크리트 2차 제품 활용성 평가)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • While the amount of construction waste has not been changed much in discharge for last 10 years, the recycled resources refined from construction waste have been mainly applied to low-leveled one such as reclamation, back-fill, road base or subbase and so on. Thus this study addresses the applicability of recycled fine aggregate as a replaceable material in precast concrete. To evaluate the possibility, both of dry and wet processes were adopted as well as steam curing, widely used in the field for rapid producing. Most important experimental parameters were driven through preliminary experiments and were evaluated in terms of concrete properties. It is found from aggregate-replacement tests that all of consistency and strengths of concrete were decreased as the ratio of recycled fine aggregate increased, and the amount of decrease can be estimated using proposed equations. Though the recycled fine aggregate showed a decrease of concrete properties more or less, the applicability in large volume as a constituent of precast product was well noted from experimental results.

A Study on Extraction Condition of Co-PET from PET/Co-PET Sea-Island Type Microfiber Fabric (PET/Co-PET해도사 직물의 Co-PET추출 조건에 관한 연구)

  • 박명수;윤종호;조대현
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.120-127
    • /
    • 2001
  • In order to make a microfiber fabric with PET/Co-PET Sea-Island Type microfiber, the optimum condition of extraction and elimination of Co-PET from the mocrofiber was examined. At the same time, the physical property change of the fabric with respect to the change of the relative amount of the Co-PET in the microfiber was also examined to provide a directly applicable data set to the industry. The sample fabric used was warp 75/36(DTY) and weft 0.05d(PET/Co-PET, Sea Island Type Microfiber) twill fabric of 36 separated yarns+40/24(high shrinking yarn) with 130/48 ITY. The data set was made at various NaOH concentrations and steam temperatures with time as a main variable. The physical properties examined were the tensile properties. The results obtained were the tensile. The results obtained were 1. For a proper extraction of Co-PET (13.5%)from the microfiber with wet curing, it takes more than 5 min. in 8 and 12% of NaOH solutions but it takes only 3 min. in 18% of NaOH solution at 12$0^{\circ}C$. 2. For a proper extraction of Co-PET (13.5%) from the microfiber with wet curing, ti takes 3~5min. in 12 and 14% of NaOH solution and it takes less than 3 min. in 18% of NaOH solution at $130^\circ{C}$. 3. The increasing ratio of WT increased with increasing NaOH concentrations and the equilibrium point reached was 3 min. at $120^\circ{C}$. 4. The WT increasing ratio was greater in 14 and 18% NaOH solutions than in 8 and 12% of NaOH solutions at $130^\circ{C}$5. The RT ratio changes at $120^\circ{C}$ in 8 and 12% of NaOH solutions were indifferent from that at $130^\circ{C}$ in 12% of NaOH solution. However, the RT was apparently decreased with increasing NaOH concentration.

  • PDF