• Title/Summary/Keyword: wet curing

Search Result 107, Processing Time 0.026 seconds

Fundamental Study on Compressive Strength Recovery for Excessive High-volume Blast Furnace Slag Mortar (고로슬래그가 다량치환된 모르타르의 알칼리 처리에 의한 압축강도 회복 가능성 분석)

  • Choi, Yoon-Ho;Sin, Se-Jun;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.103-104
    • /
    • 2019
  • The aim of the research is assessing the possibility of recovering the compressive strength of the mortar mixture replaced excessively high volume of blast furnace slag accidently. As a result of the experiment, in the case of compressive strength, painting sodium oxide showed higher compressive strength recovery effect than painting calcium oxide. As a curing temperature, 20℃ showed advanced result rather than 65℃. From the wet curing, the reaction was confirmed, deeper penetration depth was checked at 20℃ than 60℃ temperature. Therefore for the concrete mixture with excessively high volume of blast furnace slag, it is considered that painting sodium hydroxide and curing 20℃ can recover the compressive strength effectively.

  • PDF

Effects of Curing Method on the Mechanical Properties of Recycled Coarse Aggregate Concrete (양생방법에 따른 순환굵은골재 콘크리트의 강도특성)

  • Jeon, Esther;Yun, Hyun-Do;You, Young-Chan;Lee, Sea-Hyun;Shim, Jong-Woo;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.525-528
    • /
    • 2006
  • Recently, Korea government prepared Act on facilitation of construction waste recycling in December 2003 for effective recycling of rapidly increasing construction wastes, and has enforced the Act on Jan. 2005. This Act limits the definition of recycled aggregates to the aggregates which obtained quality certificate and for this purpose, government has operated quality standard and certificate system of recycling aggregate. The objective of this experimental study is to evaluate the mechanical properties of recycled coarse aggregate concrete according to curing method by ready-mixed concrete. Compressive strength ratio of recycled aggregate concrete under air-dry curing/wet curing was $74{\sim}91%$. KCI code for conventional concrete overestimated elastic modulus for recycled coarse aggregate concrete.

  • PDF

Durable High Performance Single Layer Anti-Reflective Coatings via Wet UV Curing Technology

  • Thies, Jens;Currie, Edwin;Meijers, Guido;Southwell, John;Chawla, Chander
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.98-100
    • /
    • 2004
  • We report a novel manner for preparing single layer anti-reflective coatings with excellent optical properties (<1% reflection) over a broad wavelength regime. The technology is based upon the self-assembly and UV curing of reactive nano-particles, leading to nano-structured coatings with a gradient in refractive index. The single processing step leading to such coatings is fast, robust and cost effective. Furthermore in this paper we will address the mechanical durability of such nano-structured coatings.

  • PDF

Effects of Silane-treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy (실란 커플링제로 처리된 실리카가 탄성에폭시의 경화온도 및 기계적 물성에 미치는 영향)

  • Choi, Sun-Mi;Lee, Eun-Kyoung;Choi, Seo-Young
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.147-156
    • /
    • 2008
  • In this work, epoxy/carboxyl-terminated butadiene acrylonitirile (EP/CTBN) composites were prepared by employing a reinforcing filler, silica treated with silane coupling agent in different ratio by dry and wet method. Their curing characteristics, surface free energy, interface morphologies and mechanical properties such as tensile strength and impact resistance were carefully investigated. Differential scanning calorimetry(DSC) results showed that curing temperature was lowered with the increase of silane coupling agent because of the increase of relative curing agent cotent by filling the pores of silica. Wet method was proved to be more effective for lowering curing temperature of EP/CTBN composite. In general, surface free energy and impact resistance were increased with the increase of silane coupling agent in this work. Tensile strength, however, was observed to be decreased at 4 wt% of silane coupling agent. It was found that the dry method was proved to be preferable for pretreatment of silica with coupling agent.

A Study of Spraying Curing Compound for Concrete Pavement Considering Environmental Condition in Tunnel (터널내 환경을 고려한 콘크리트 포장의 양생제 살포기준 연구)

  • Ryu, SungWoo;Kwon, OhSun;Song, GeoRuemSoo;Lee, MinKyung;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-57
    • /
    • 2014
  • PURPOSES : This study is to suggest tunnel length to spray curing compound, based on the field tests. METHODS : At first field test, length from the entrance of tunnel to wet wall was checked by visual survey. The second and third test, various sensors were installed in concrete or in tunnel, such as RH sensor, temperature sensor, portable weather station and etc.. And also, test for bleeding and retaining water of concrete were conducted to evaluate environmental effect on concrete pavement. RESULTS : The result of the field experiment for tunnel length to spray curing compound indicates that length changes depending on tunnel length, season, and location. Environmental condition of a short tunnel was not much different between location near entrance and at center of tunnel. However, in case of a medium and long tunnel, effect of outside environmental condition decreased, when location moved into tunnel center of it. CONCLUSIONS : From the testing results, it can be proposed that optimum tunnel length to spray curing compound is 60m for a medium and long tunnel, and whole length for a short tunnel.

Comparison of Drying Shrinkage with Concrete Strength and Curing Condition (콘크리트 강도와 양생조건에 따른 건조수축량 비교)

  • Kim, Il-Sun;Yang, Eun-Ik;Yi, Seong-Tae;Moon, Jae-Heum;Lee, Kwang-Myong;Kim, Jee-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.407-408
    • /
    • 2009
  • Drying shrinkage have influence on the durability of concrete structure. Various models have been suggested to predict the drying shrinkage, experimentally. In this study, the drying shrinkage with Concrete strength and Curing condition was measured, and compared with representative model code. As a result, drying shrinkage was reduced as W/C ratio decrease, and total shrinkage greatly reduced in 4 week wet curing case. The test results agreed with EC2 model better than the other.

  • PDF

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

Study on engineering properties of xanthan gum reinforced kaolinite

  • Zhanbo Cheng;Xueyu Geng
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.501-511
    • /
    • 2023
  • The strengthening efficiency of biopolymer treated soil depends on biopolymer type, concentration ratio, soil type, initial water content, curing time and mixing method. In this study, the physical and mechanical properties of xanthan gum (XG) treated kaolinite were investigated through compaction test, Atterberg limit test, triaxial test and unconfined compression test. The results indicated that the optimum water content (OWC) increased from 30.3% of untreated clay to 33.5% of 5% XG treated clay, while the maximum dry density has a slight increase from 13.96 kg/m3 to 14 kg/m3 of 0.2% XG treated clay and decrease to 2.7 kg/m3 of 5% XG treated clay. Meanwhile, the plastic limit of XG treated clay increased with the increase of XG concentration, while 0.5% XG treated clay can be observed the maximum liquid limit with 79.5%. Moreover, there are the ideal water content about 1.3-1.5 times of the optimum water content achieving the maximum dry density and curing time to obtain the maximum compressive strength for different XG contents, which the UCS is 1.52 and 2.07 times of the maximum UCS of untreated soil for 0.5% and 1% XG treated clay, respectively. In addition, hot-dry mixing can achieve highest UCS than other mixing methods (e.g., dry mixing, wet mixing and hot-wet mixing).

A Study on the Properties of Anticorrosive for RC Structure (콘크리트구조물 보수용 방식피복재의 특성)

  • Moon, Han-Young;Shin, Dong-Gu;Kwon, Yong-Jin;Oh, Sang-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.251-258
    • /
    • 2005
  • Up until now, most protection design has been concerned primarily with concrete's exterior protection from corrosion, its waterproof ability and its reparability. However, there are many cases in which service life of the concrete is shortened because suitability of the type of concrete surface has not been thoroughly investigated in the development process. According1y, this paper presents the development and test of the material for its reparability and its protection against corrosion in the case of wet surfaces (i.e. water supply facilities, sewage systems, and port facilities) in this country. From the test, both A type and B type are excellent for durability in watertightness, chemical resistance and abrasion. Test results of adhesive strength over $15kgf/cm^2$ under both wet and dry conditions, curing conditions and various temperatures conditions were also achieved in field tests.