• Title/Summary/Keyword: wet cooling towers

Search Result 5, Processing Time 0.017 seconds

Mass Transfer from Heat Exchanger for Closed Wet Cooling Tower (밀폐형 냉각탑용 열교환기에서의 물질전달)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck;Han, Kyu-Hyun;Kim, Joo-Sang;Ryu, Hae-Sung;Park, Hyoung-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1119-1122
    • /
    • 2009
  • The use of cooling towers in the air conditioning systems of buildings is increasing. In closed wet cooling towers, the heat transfer between the air and surface tubes can be composed of the sensible heat transfer and the latent heat transfer. The latent heat transfer is affected by the air and spray water. This study provides a designing methodology of heat exchanger for closed wet cooling tower. The correlation equation was derived to interpret the mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental results. The results from this correlation equation showed fairly good agreement with experimental data.

  • PDF

A study on the counter-flow cooling tower performance analysis using NTU-method (NTU법을 이용한 대향류형 냉각탑의 성능해석에 관한 연구)

  • 김영수;서무교;이상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.598-604
    • /
    • 1999
  • The thermal performance of cooling towers is affected by the temperature of inlet water, wet bulb temperature of entering air add water-air flow rate. In this study, the effects of these variables are simulated using NTU-method and experimentally investigated for the counter-flow cooling towers. The simulation program to evaluate these variables which affect the performance of cooling tower was developed. The maximum errors between the results of simulations and experiments were 3.8% under the standard design conditions and 5.4% under the other conditions. The performance was increased up to 46~50% as the water loading was increased from $6.8m^3$/$hr\cdot m^2$ to $15.9m^3$/$hr\cdot m^2$. The range was reduced up to 56~42% when the wet bulb temperature of the entering air was increased from $22^{\circ}C\; to\; 29^{\circ}C.$

  • PDF

Simultaneous water and energy saving of wet cooling towers, modeling for a sample building

  • Ataei, Abtin;Choi, Jun-Ki;Hamidzadeh, Zeinab;Bagheri, Navid
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.173-181
    • /
    • 2015
  • This article outlines a case study of water and energy savings in a typical building through a modelling process and analysis of simultaneous water-energy saving measures. Wet cooling towers are one of the most important equipments in buildings with a considerable amount of water and energy consumption. A variety of methods are provided to reduce water and energy consumption in these facilities. In this paper, thorough the modeling of a typical building, water and energy consumption are measured. Then, After application of modern methods known to be effective in saving water and energy, including the ozone treatment for cooling towers and shade installation for windows, i.e. fins and overhangs, the amount of water and energy saving are compared with the base case using the Simergy model. The annual water consumption of the building, by more than 50% reduction, has been reached to 500 cubic meters from 1024 cubic meters. The annual electric energy consumption has been decreased from 405,178 kWh to 340,944 kWh, which is about 16%. After modeling, monthly peak of electrical energy consumption of 49,428 has dropped to 40,562 kWh. The reduction of 18% in the monthly peak can largely reduce the expenses of electricity consumption at peak.

A Study on The Counter-Flow Cooling Tower Performance Anaysis and Experiments

  • Seo, Moo-Gyo;Kim, Young-Soo;Kim, Eun-Pil;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.50-57
    • /
    • 2001
  • The thermal performance of cooling towers is affected by the temperature of inlet water, wet bulb temperature of entering air and water-air flow rate. In this stud${\gamma}$, the effects of these variables are simulated using NTU-method and experimentally investigated for the counter-flow cooling towers. The simulation program to evaluate these variables which affect the performance of cooling tower was developed. The maximum errors between the results of simulations and experiments were 3.8% under the standard design conditions and 5.4% under the other conditions. The performance was increased up to 46~50% as the water loading was increased from 6.8$m^3/hr{\cdot}m^2$ to 159$m^3/hr{\cdot}m^2$. The range was reduced up to 56~42% when the wet bulb temperature of the entering air was increased from 22${\circ}C$ to 29${\circ}C$.

  • PDF

Experimental study on the thermal performance of a cooling tower (냉각탑 열성능 특성의 실험적 연구)

  • 이한춘;방광현;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.88-94
    • /
    • 1998
  • The thermal performance of cooling towers is affected mainly by the velocity, temperature and humidity of the entering air, In this paper, the effects of these variables are experimentally investigated for both counter-flow and cross-flow cooling towers. The cooling performance is reduced by up to 50% as the relative humidity of the entering air is increased from 40% to 80%. The higher air velocity and lower coolant flow show better cooling performance. The coolant loss rates in the present experimental conditions are in the range of 0.4 to 1.7%

  • PDF