• Title/Summary/Keyword: wet abrasive wear

Search Result 7, Processing Time 0.02 seconds

The Influence of Diamond Abrasive Size on the Life of Tungsten Carbide Wet Drawing Dies (다이아몬드 연마재 입도가 초경 습식신선 다이스 수명에 미치는 영향)

  • Lee, S.K.;Kim, M.A.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.518-523
    • /
    • 2006
  • Wet wire drawing of brass coated steel wire, used for tire reinforcement, is realized with Tungsten Carbide(WC) dies sintered with a cobalt(Co) binder. Dies wear represents an important limitation to the production process and cost savings. Several parameters, such as Co content, WC grain size of tungsten carbide, sintering conditions, and so on, affect on the wear of the drawing die. In this study, the effect of the diamond abrasive particle size on the life of the WC centered dies of the wet wire drawing was investigated. Wet wire drawing experiments were carried out on a wet wire drawing machine. From the experiments, the dies life, dies fracture, wire surface roughness, and wire breaks were investigated. From the results, it was found that the wear of the WC dies increased with the increase in the diamond abrasive particle size.

Experimental Study on Wear Characteristics of Metallic Materials used in Oil Sands Plants (오일샌드 플랜트용 금속소재의 마모 특성에 대한 실험적 연구)

  • Won, Sung-Jae;Cho, Seung-Hyun;Kang, Dae-Kyung;Heo, Joong-Sik
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • Recently, international attention has been focused on the development of non-traditional energy resources such as shale gas and oil sands, due to the steep increase in the demand for natural resources. The materials incorporated in an oil gas plant module experience extreme environments, and are prone to various problem such as fracture, corrosion and abrasion due to low-temperature brittleness. In order to improve the plant life, it is necessary to perform characteristics study and performance evaluation of the materials. In particular, this paper explains the main set of materials which are most frequently used in oil sands plant project. In order to investigate wear characteristics, the authors carried out abrasive wear tests of TP 316, stainless steel and SS 400, structural rolled steel. For the analysis of the abrasive wear resistance of an oil sands plant, the authors carried out the test according to ASTM G 105 "Standard Test Method for Conducting Wet Sand/Rubber Wheel Abrasion Test" standard guidelines. The authors have derived the results from the data associated with the loss of mass with respect to wear rate. During the test, for a given wear length for 10,000 revolutions, the rotational speed and applied force of the rubber wheel were varied.

An Experimental Study on the Wear of Alumina Grinding Wheels (알루미나 연삭숫돌의 마모에 관한 실험적 연구)

  • Cho, Ki-Su;Lee, Jong-Chan;Choi, Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.113-118
    • /
    • 1994
  • An experimental investigation on the wear of alumina grinding wheel is presented. The experiments consist of the measurements of fracture strength of the abrasive grains, grinding forces, and the area of wear flats of grinding wheels. Microscopic examinations of abrasive grains were also carried out to observe the progress of wheel wear. the results show that the 32A grain, which has relatively lower fracture strength, wears out faster than 5SS and 5SG. The wheel wear occurs much faster in wet grinding than in dry grinding. It has also been found that the grinding forces increase logarithmically with increasing wear flats.

  • PDF

An Experimental Study on Grinding Performance and Wear of Alumina Grinding Wheels Developed for High Performance Grinding (고능률 연삭용 알루미나 연삭숫돌의 연삭성능 및 마멸에 관한 실험적 연구)

  • Cho, Kisoo;Lee, Jongchan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.38-45
    • /
    • 1996
  • A new grinding wheel was developed for the high performance grinding of difficult-to-grinding materials. The grinding performance of the newly developed wheel including grinding forces, grinding ratio, and surface roughness of ground surface was evaluated through experiments. Experimental results show that the performance of the newly developed wheel is superior to the conventional alumina wheel and comparable to the Sol-gel wheel. An experimental investigation on the wear of alumina grinding wheel was also carried out. The experiments consist of the measurements of fracture strength of the abrasive grains, grinding force, and the area of wear flats of grinding wheels. Microscopic examination of abrasive grains was executed to observe the progress of wheel wear. The results indicate that the 32A grain, which has relatively lower fracture strength, wears out faster than 5SS and 5SG. The wheel wear occurs much faster in wet grinding than in dry grinding. It has also been found that the grinding forces increase logarithmically with increasing wear flats.

  • PDF

Model for predicting tool life of diamond abrasive micro-drills during micro-drilling of ceramic green bodies (세라믹 성형체의 미소구멍 가공 시 다이아몬드 입자 전착 드릴의 공구 수명 예측 모델)

  • 이학구;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.593-598
    • /
    • 2003
  • Ceramic plates containing many micro-holes are used in diverse applications such as MCP (Microchannel Plate). catalytic converters, filters, electrical insulators in integrated circuits, and so on. One of the efficient methods for machining many holes in ceramic plates is wet drilling of ceramic green bodies followed by sintering them. Since the strength of ceramic green bodies is much lower than the strength of sintered ceramic plate, ceramic green bodies can be drilled with high feed rate. The axial force during micro-drilling of ceramic green bodies increases rapidly at high feed rate, which induces the crack in workpiece. Therefore, the tool lift of micro-drill with respect to feed rate may be determined by the predicting increase of axial force. In this work, the axial force during micro-drilling was calculated using the chip flow model on the micro-drill tip. from which the tool life of diamond abrasive micro-drill during micro-drilling of ceramic green bodies was calculated.

  • PDF

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

Abrasion-Resistant Road Markings for Improved Durability Lane to Wear Simulators Test (차선재료의 내구성 향상을 위한 내마모성 시험 적용 연구)

  • Lee, Chang-Geun;Park, Jin-Hwan;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • There is the uncertain period of the construction in case of the products meeting the quality standard of KS M 6080, the quality is degraded because of the abrasive loss of the paint caused by vehicle tires as the traffic amount increases and of the loss and detachment of the glass beads providing the retroreflective function. The abrupt degradation of visibility causes the high frequency of traffic accidents at night and increases the traffic accident rate. Additional supplementary construction induces the direct material and construction costs. As the more cost induction effect than the direct cost, the traffic jam caused by the additional construction increases the indirect social costs such as time cost and vehicle cost. Hence, the study is concerned with performing the abrasion resistance test based on the EN 1436 standard to check and improve the quality of various road marking materials resulting in improving the durability of road marking materials. However, even though the difference in the durability lifetime of resins(binders) is bibliographically or theoretically clear, there was no difference in the durability lifetime (retroreflectivity aspect) of the road marking paint using these binders. The reason is that the bonding of beads was very insufficient or that the cross density caused by crack or freshness was low. Moreover, the measured wet retroreflectivity was distributed as the Rw3 or higher class in average on the basis of EN 1436 but was very insufficient on the basis of the minimum wet threshold retroreflectivity with 100mcd/($m^2{\cdot}lx$) managed overseas.