• Title/Summary/Keyword: well inclination angle

Search Result 89, Processing Time 0.023 seconds

A Study on the Effective Free Surface of Fluid Cargo (유동화물의 유효자유표면에 관한 연구)

  • Hur, I.;Wang, J.S.
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.2
    • /
    • pp.73-88
    • /
    • 1987
  • It is well known that the height of tank metacenter above the centroid of fluid in a tank is given by i/v where I is the inertia moment of free surface and v is the fluid volume. It is supposed in this formula that the inclination of ship is small and that the free surface of fluid do not touch the top and the bottom of tank. It the inclination of ship is large, the height of tank metacenter may be possibly greater than that given by i/v. The height of tank metacenter is smaller than i/v when the free surface of fluid touch the top or the bottom of tank. The reasonable method to calculate the height of tank metacenter is presented in this paper and prepared in FORTRAN program by FUNCTION EFFRES. The approximate formula was also developed and given by $g_m=(1+\frac{2}{1}tan^2\theta)[1-EXP\{-12(\frac{\alpha(1-\alpha)k}{tan\theta})^{1.25}\}]\frac{i}{v}$ where $g_m$ is the distance from the centroid of fluid to the tank metacenter, $\theta$ is inclined angle of ship, $\alpha$ is the ratio of filled volume to tank capacity and k is the ratio of the depth to the width of tank. The values calculated by the approximate formula given in this paper were compared with the exact values from the computer program and proved out to be sufficiently precise for practical use.

  • PDF

The impact of sidetracking on the wellbore stability

  • Elyasi, Ayub;Goshtasbi, Kamran
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In the past sidetracking was the means to bypass a damaged zone or to correct the direction of a wellbore. Nowadays, this method is very common and useful in relocating the bottom of a wellbore in a more productive zone and consequently enhancing the production of a reservoir by saving a significant amount of time and money. In this paper, the stability of the bend area is assessed considering varied conditions of stress regime and sidetrack orientation. In general, the stress regime and the orientation of the principal stresses have negligible effect on the stability of the sidetrack compared to sidetrack inclination. On the other hand, the sidetrack deviation angle from the vertical main well plays the major role in the stability of the bend area.

Effect of Joint Cohesive Strength on the Earth Pressure against the Support System in a Jointed Rock Mass (절리형성 암반지층 굴착벽체 작용토압에 대한 절리 점착강도의 영향)

  • Son, Moorak;Solomon, Adedokun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.41-53
    • /
    • 2014
  • This study examined the magnitude and distribution of the earth pressure on the support system in a jointed rock mass by considering different joint shear strength, rock type, and joint inclination angle. The study particularly focused on the effect of joint cohesive strength for a certain condition. Based on a physical model test (Son and Park, 2014), extended parametric studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the rock and joint characteristics of rock mass. The results showed the earth pressure was strongly affected by the joint cohesive strength as well as the rock type and joint inclination angle. The study indicated that the effect of joint cohesive strength was particularly significant when a rock mass was under the condition of joint sliding. This paper investigates the magnitude of joint cohesive strength to prevent a joint sliding for each different condition. The test results were also compared with Peck's earth pressure, which has been frequently used for soil ground. The comparison indicated that the earth pressure in a jointed rock mass can be significantly different from that in soil ground. This study is expected to provide a better understanding of the earth pressure on the support system in a jointed rock mass.

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(I) -Configuration Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(I) -배열의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1122-1130
    • /
    • 2001
  • Film cooling performance from two rows of holes with opposite orientation angles is evaluated in terms of heat flux ratio. The film cooling hole has a fixed inclination angle of 35°and orientation angle of 45°for the downstream row and -45°for the upstream row. Four film cooling hole arrangements including inline and staggered configurations are investigated. The blowing ratio studied was 1.0. Boundary layer temperature distributions are measured to investigate injectant behaviors and mixing characteristics. Detailed distributions of the adiabatic film cooling effectiveness and the heat transfer coefficient are measured using TLC(Thermochromic Liquid Crystal). For the inline configuration, there forms a downwash flow at the downstream hole exit to make the injectant well attach to the wall, which gives high adiabatic film cooling effectiveness and heat transfer coefficient. The evaluation of heat flux ratio shows that the inline configuration gives better film cooling performance with the help of the downwash flow at the downstream hole exits.

Stability Analyses for Excavated Slopes Considering the Anisotropic Shear Strength of the Layered Compacted Ground (다짐지반에 조성되는 굴착사면의 비등방성 전단강도를 고려한 안정성 분석)

  • 이병식;윤요진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.27-35
    • /
    • 2002
  • To construct pipe lines, culverts, or other utility lines, temporary slopes formed by excavating the compacted embankment are frequently met with in the field. Ignoring stability analyses for such slopes and applying inappropriate slope inclinations often result in safety problems. In this study, stability of such slopes were investigated considering the influence of anisotropic shear strength of the layered compacted ground. A series of stability analyses were conducted for slopes varying the slope angle and the height, and assuming isotropic and anisotropic shear strength conditions, respectively. The anisotropic shear strength of the compacted soil was determined from the direct shear test for layered soil blocks varying the inclination angle between the horizontal shear surface and the direction of the soil layer. As a result of the analyses, it has been concluded that the appropriate slope inclination f3r a temporary slope could vary in accordance with the consideration of anisotropy. However, the factor of safety as well as the location of the failure surface did not show significant variation.

Analysis the factors on the capsize of passenger vessel Sewol (여객선 세월호의 전복 요인 분석)

  • KIM, Jung-Chang;KANG, Il-Kwon;HAM, Sang-Jun;PARK, Chi-Wan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.4
    • /
    • pp.512-519
    • /
    • 2015
  • A historical tragic disaster happened by capsizing the passenger ship Sewol at South Western Sea of Korea in 16, April 2014. The ship which left Incheon harbour to bound for Jeju port passed Maengol strait and reached to approach of Byung Pung island, and then capsized and sank with a sudden inclination to the portside in the mean time of starboard the helm. In this time, the ship which has very poor stability without sufficient ballast waters and with over loading cargo listed port side caused by the centrifugal force acting to the outside of turning. A lot of cargoes not fastened moved to the port side consequently, and the ship came to beam end to capsize and sank in the end. No crews including especially captain would offer their own duties in a such extremely urgent time, as a result, enormous number of victims broke out including a lot of student. In this report, author carried out some calculation on the factors which influenced on the stability of the ship, i.e. the ship's speed, the rudder angle, the weight of cargoes and distance of movement, the surface effect of liquid in the tank. We found out that the most causes of capsize were the poor stability with heavy cargoes and insufficient amount of ballast water against the rule, and the cargoes unfastened moved one side to add the inclination as well. Above all, the owner be blamable because of the illegally operating the ship without keeping the rule.

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

A proposal of the Optimal Angle of Standing Assistant Chair for the Elderly by Comparing of Pressure Distribution on Hip (둔부의 압력분포 비교를 이용한 고령자용 기립보조의자의 기립 최적각도 제안)

  • Chang, Sung-Ho;Baek, Ji-Hoon;Lee, Jung-Eon;Mirazamjon, Nematov;Kang, Seok-Wan;Lee, Wang-Bum
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.108-114
    • /
    • 2018
  • One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over $25^{\circ}$, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than $25^{\circ}$ for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on $0^{\circ}$ to $25^{\circ}$ tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.

Magnetoresistance Variation for Rotation in Ferromagnetic Thin Films (강자성체박막의 회전에 따른 자기저항의 변화)

  • Yang, Ki-Won;Park, Sang-Chul
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.225-229
    • /
    • 2006
  • In our angle configuration, several peculiar characteristic behaviors of MR could be observed, the mixing of positive MR(PMR) and negative MR(NMR) in the inclined sample was observed. The complete mixing angle, ${\phi}_{mix}$ as a function of inclination angle, ${\theta}$ was observed to fit well to the relation of ${\phi}_{mix}=tan^{-1}(1+tan{\theta})$ in nickel films. The above theoretical relation was obtained by decomposing the magnetic field into the components parallel and perpendicular to the current flow and identifying ${\phi}_{mix}$ as the angle satisfying that the above two components of magnetic field were identical. We also observed that the data of ${\phi}_{mix}$ did not satisfy the above theoretical relation in the iron film. This was explained by the fact that the growth direction in the iron film was an intermediate direction of magnetization, while the growth direction in the nickel film was an easy axis of magnetization.

  • PDF

Evaluation of Seat Pan Inclination During Sit-to-stand for Development of Elderly Lifting-chair

  • Hong, Jae-Soo;Kim, Jong-Hyun;Chun, Keyoung-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.357-363
    • /
    • 2011
  • Objective: The aim of this study is to set the design direction of the lift chair's tilting seat for development. Background: Great attention has been shown to the development of senior friendly product, because of increasing elderly population rapidly in Korea. Therefore, we need to study on sit-to-stand(STS) motion of elderly systematically for developing lift chair that is one of senior friendly products. Method: In this study, we analyzed joint moment(knee, hip) and muscle activity (Erector spinae, Rectus femoris, Vastus lateralis) on STS motion of elderly(female, 60~70: 7) and young people(female, 20~30: 7) using 3 dimension motion capture camera, force plate, wireless EMG. Results: The results of muscle activity showed a similar trend but the results of joint moment were a lot of differences between the young and the elderly. Conclusion: The results of knee joint moment suggest the angle(10~30deg)-adjustable seat that can be better than to find the optimal seat's angle. Application: The method and results of this study are expected to develop senior friendly product and verification as well as be available to various application.