• Title/Summary/Keyword: welding strength

Search Result 1,792, Processing Time 0.027 seconds

Effects of Welding Parameters on Weld Metal Strength and Recovery of Alloying Elements in FCAW (FCAW에서 용접변수에 따른 용접금속 강도 및 와이어 합금원소의 회수율 변화)

  • Jung, Dong-Hee;Bang, Kook-Soo;Park, Chan;Chang, Woong-Sung;Park, Chul-Gyu
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.69-74
    • /
    • 2008
  • 590MPa grade weldable steels were gas metal arc welded with flux cored wires. Welding parameters such as current, voltage, and speed were varied independently. Effects of each parameter on the strength and chemical composition of weld metal were investigated. Increase of voltage caused decrease of weld metal tensile strength due to the low recovery of alloying elements such as carbon and manganese. On the contrary, increase of current and speed resulted in increase of weld metal strength because of higher recovery of the alloying elements.

A Study on Laser Welding Application of the Cowl Cross Member for Ultra-High Strength Steel (초고장력 강판을 적용한 Cowl Cross Member의 레이저 용접 적용에 관한 연구)

  • Park, Dong Hwan;Yun, Jae Jung;Kim, Kun Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.525-531
    • /
    • 2014
  • A cowl cross is a part of the car's instrument panel used to maintain the rigidity of the vehicle body side. The application of laser welding has the benefits of speed and thermal deformation compared to arc welding. An ultra-high strength steel sheet is used to reduce the weight of the vehicle body parts. Generally, formability of such a steel sheet is poor because its elongation is very low. For this reason, a method for cold forming of an ultra-high strength steel sheet is required. This paper describes how to improve the formability and weldability of the ultra-high strength steel sheet. Mechanical tests of this material were also performed to evaluate the welding properties of $CO_2$ (GMAW) and those of laser welding.

S-N Fatigue Strength of Small Diameter Branch Welded Pipe with Variation of Welding Shapes and Welding Procedures (용접부의 형상과 공정변화에 따른 소구경 분기배관의 피로강도 특성평가)

  • 백종현;김우식
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.50-55
    • /
    • 2004
  • S-N fatigue tests were conducted to investigate the fatigue strength of small diameter socket and butt welded joints made of carbon steels. Experimental parameters were pipe diameter, throat depth, shape of socket welds and welding procedure. Filler metals used in SMAW and GTAW procedure were E9016-G with diameter of 4.0 m and ER70S-G with diameter of 2.4 m. API 5L Gr.B pipes were adopted as a small diameter branch pipes. All socket fittings were machined from ASTM A105 carbon steel. Tensile strength was not affected by the welding procedure. Fatigue strength in socket weld joints increased with increasing pipe diameter, area of weld metal and weld leg length of pipe side.

Weldability and Weld Strength of Underwater Welds of Domestic Structural Steel Plates (國산構造용 鋼板 의 水中熔接性 과 熔接强度 特性)

  • 오세규;남기우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.263-269
    • /
    • 1983
  • Underwater welding by a gravity arc welding process was investigated by using six types of coated electrodes and SM41A steel plates of 10 mm thickness as base metal and it was ascertained that this process may be put to practical use. Main results obtained are summarized as follows: 1. Angle of electrode affects no influence on bead appearance and the proper range of welding current and diameter of electrode for the high titanium oxide type is relatively wider than that for the ilmenite type. And the lime titania type, high titanium oxide type and ilmenite type of domestic coated arc welding electrodes of .phi.4 mm could attain the soundest underwater welded joints which contain no welding imperfection. 2. According to macro-structure, micro-structure and hardness distribution inspectionson underwater welded joint, the area between the HAZ and the surface of the weld in neighbourhood of the bond has the maximum hardness value. The structure of these parts is martensite and bainite. Other parts contain mocro-ferrite, micro-pearlite structure, which contain soundness of welded joint free from weld imperfection. 3. On consideration of both tensile strength of more than 100% joint efficiency and sufficient impact value, the welding condition which can get optimal welding strength is heat input of 1,400-1,500 J/mm, current of 200-215 ampere (voltage of 32-33 volts) in the case of lime titania type electrode. 4. Underwater welding strength (tensile strength, impact strength) depends on heat input (or current) quantitatively and they have the relationship of parabolic function. Each experimental equation has a high reliability and its percent of mean error is 4.14%. 5. It is suggested that the optimal design of weld strength by welding condition (current, heat input) could be utilized for a quality control of underwater welding.

A Study on the Optimum Welding Conditions for Reducing the Depth of Indentation of Surface in Spot Welding (점용접 시 압흔 깊이 감소를 위한 최적 용접조건 선정에 관한 연구)

  • 서승일;이재근;장상길;차병우
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.57-64
    • /
    • 1996
  • In this paper, authors are trying to find optimum spot weldig conditions to minimize indentation of the plate surface which is crucial to quality of stainless rolling stocks. At first, to derive a simple equation to estimate the depth of indentation, a simplified one-dimensional bar model is proposed and validity of the model is confirmed by experiments. And also, to find proper welding conditions giving satisfied tensile strength of the welded joint, a simple formula is derived referring to the standard spot welding conditions by AWS. Optimization problem is formulated to find welding conditions such as welding current, time and applied force which give minimum indentation and proper tensile strength of joint, and solutions are found out. According to the results, the depth of indentation can be expressed by applied electrode froces and it can be shown that an optimum applied force exists.

  • PDF

The Design of Manufacturing Process Optimization for Aluminum Laser Welding using Remote Scanner (원격 스캐너를 이용한 알루미늄 레이저 용접에 대한 생산 공정 최적화 설계)

  • Kim, Dong-Yoon;Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.82-87
    • /
    • 2011
  • In this study, we conducted laser welding by using remote scanner that is 5J32 aluminum alloy to observe the mechanical properties and optimize welding process parameters. As the control factors, laser incident angle, laser power and welding speed were set and as the result of weldablility, tensile shear tests were performed. ANOVA (Analysis of Variation) was also carried out to identify the influence of process variables on tensile shear strength. Strength estimation models were suggested using regression alnalysis and 2nd order polynomial model had the best estimation performance. In addition optimal welding condition was determined in terms with wedalility and productivity using objective function and fitness function. Final optimized welding condition was laser power was 4 kW, and welding speed was 4.6 m/min.

A Study on the Spot Weldability of High Strength Steel Sheet and Two Stories Galvannealed High Strength Steel Sheet (고장력강판 및 2층아연도금된 고장력 강판의 점용접성에 관한 연구)

  • 신현일;강성수
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.56-62
    • /
    • 1994
  • The spot weldability of high strength steel sheet and two stories galvannealed high strength steel sheet has been studied. 1) Tensile shear strength decreased inversely as welding current increased over 12KA in the case of two stories galvannealed high strength steel sheet. 2) When heat flux input over 12KA, hardening region become narrow in case of two stories galvannealed high strength steel sheet. 3) The size of hardening region affect the strength of nuggets.

  • PDF

A Study on the Spot Weldability of Automotive Steel Sheets (자동차용 도금강판의 점용접성에 관한 연구)

  • 민준기;오영근;김광수
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.41-47
    • /
    • 1996
  • The spot weldability of coated steels for automobile has been investigated. Coated steels of SPC-Zn DC, SPC Zn-Ni SC, SPC Zn-Ni DC, SPC Zn-Fe DC and OCCS were welded under different conditions of welding current, force and time. Coating thickness at the welded surface was reduced as increased welding current. Tensile shear strength(TSS) and cross tensile strength (CTS) were increased up to expulsion began, then dropped as increased current. Optimum conditions of welding force and time were different, however 200~250kgf and 15~20cycle were optimum for coated SPC (Steel Plate Cold). Weldability lobes were measured for each coated steel and they showed narrow range of working welding current. The organic composite coated steel (OCCS) had the highest current to get $\sqrt5{t}$ nugget size and narrowest working welding current range.

  • PDF

Failure analyses of friction welded Al/Cu joints (Al/Cu 마찰용접부의 파단분석)

  • 박재현;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.12 no.1
    • /
    • pp.80-93
    • /
    • 1994
  • The microstructure and fractography of the friction welded joint of Al to Cu have been investigated in order to understand the formation of intermetallic compounds and their effects on the failure in tensile test of the joint. The variation of welding pressure did not affect significantly the tensile strength of joint. However, the tensile strength of joint decreaed as welding time increased. The thickness of reaction layers of welded joints was several micro-meters and mainly composed of intermetallic compounds of $CuAl_2$, $Cu_9Al_4$ and Al+$CuAl_2$. The thickness of $CuAl_2$, $Cu_9Al_4$ was increased with welding time. However, $CuAl_2$ was gradually changed to $Cu_9Al_4$ which caused the decrease of tensile strength . Even though the morphology of fractured surfaces depended upon the welding time, the failure occurred along $CuAl_2$ intermetallic compound itself or between $CuAl_2$ and $Cu_9Al_4$ in most cases.

  • PDF

A Study on the Simplified Method to Calculate the Compressive Strength of Welded Structures (용접 구조물 압축강도의 간이해석에 관한 연구)

  • 서승일
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2000
  • Residual stresses and deformations due to welding have effects on the strength of structures. In this paper, the compressive strength of basic welded structures is studied and the effects of the residual stresses and deformations on the compressive strength of beams, plates and shells are investigated,. Theoretical analysis for the basic structures is carried out and simplified methods to calculate the compressive strength are proposed. The proposed methods yield simple formulas to calculate the compressive strength, of which results are much helpful. The accuracy of the proposed method is revealed by comparison with experimental results.

  • PDF