• 제목/요약/키워드: welding of steel can

검색결과 409건 처리시간 0.024초

오스테나이트계 304 스테인리스강의 Nd:YAG 레이저 맞대기 용접특성 (Butt Welding Characteristics of Austenitic 304 Stainless Steel Using a Continuous Wave Nd:YAG Laser Beam)

  • 유영태;오용석;신호준;임기건
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.165-173
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

800 MPa급 무예열 용접재료의 폭파변형성능에 관한 연구 (Investigation on Explosion Bulge Test Results of 800 MPa Grade Pre-heat Free Welding Consumables)

  • 박태원;송영범;김진영;박철규;김희진
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.80-86
    • /
    • 2009
  • The Cu-bearing PFS-700 steel which has yield strength over 700 MPa was developed to replace the existing submarine structural material, HY-100. The PFS-700 steel has a combination of good mechanical properties and superior weldability. Becaus of that, it can be welded without pre-heating. The application of PFS-700 steel to submarine or battle ship will give a great reduction of cost by omitting pre-heating or lowering pre-heat temperature. To develop pre-heating free welding consumables that match and take advantage of PFS-700 steel, new welding consumables have been designed for the GMAW, SAW processes and explosion bulge test(EBT) was conducted to see the reliability of welded structure. All welds were made without pre-heating, and the inter-pass temperature was below $50^{\circ}C$ for SAW50 and $150^{\circ}C$ for GMAW and SAW150. All EBT specimens show over 14% thickness reduction without through-thickness crack or crack propagation to the hole-down area. Tensile properties for all welding conditions show higher(GMAW) or similar values(SAW50, SAW150) to the base metal. Charpy impact values for the weld metal also show 163.5J(GMAW), 95.4J(SAW50) and 69.0J(SAW150), which meet the goal(higher than 50J) of this project.

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • 제32권1호
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

파이버 레이저의 스테인리스강 용접시 인프로세스 모니터링을 위한 유기 플라즈마와 방사신호간의 상관성 연구(II) - 후판 용접시 측정신호의 특성 변화 - (A Study on Correlationship between the Induced Plasma and Emission Signals for In-process Monitoring in Stainless Steel Welding of Fiber Laser (II) - Properties Changes of the Measured Signals in a Thick Plate Welding -)

  • 이창제;김종도
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.70-74
    • /
    • 2014
  • On this study, we researched the in-process monitoring during fiber laser welding as well as on the first paper. On the previous/formal study, we analyzed the change of emission signal on thin plate welding. On this study, however, we analyzed RMS and FFT with emission signals in laser welding on lap joint and butt joint of 8mm-thick 316L stainless steel. As the result, the movement of specific frequency peak was observed according to welding speed changes. Furthermore, frequency peak as a result of FFT on the thick plate welding are much clearer than on the thin plate welding. Therefore, it is expected that the welding parameter changes can be predicted in case of applying FFT to in-process monitoring.

자동차 B-pillar부품의 스폿용접 및 접착 혼용 용접부의 충돌특성 및 해석에 관한 연구 (A Study on the Crash Characteristics and Analysis of Spot+adhesive Welds in Automobile B-pillar Parts)

  • 최영수;윤상만;조용준;이세헌
    • Journal of Welding and Joining
    • /
    • 제29권5호
    • /
    • pp.72-81
    • /
    • 2011
  • In the present day, the needs of new steel for lightweight car-body have been increased in the automotive industry. however, the resistance spot welding is difficult to apply to the new steel because of the narrow weld current range and defects. As the solutions to these problems, adhesive bonding process is proposed. Adhesive bonding which reduce noise and vibration can be applied to joining the new steel. In this study, crash tests of b-pillar applied the resistance spot welding, structural adhesive bonding, the mixture of the structural adhesives and resistance spot welding were performed. And FEM crash model for b-pillar applied the structural adhesive bonding was developed. The results of experiment and analysis on b-pillar crash test were compared to verify the validity.

탄소강-스테인리스강 용접부의 피로균열진전 특성에 관한 연구 (A Study on the Fatigue Crack Growth Characteristics for the Weldment of Carbon steel-Stainless steel)

  • 권재도;김우현;김길수;박중철;배용탁;김중형
    • Journal of Welding and Joining
    • /
    • 제16권4호
    • /
    • pp.47-54
    • /
    • 1998
  • Various equipments in plants are welded with two different materials and it is required to investigate the effects of fatigue crack propagation on the neighborhood of a welded portion. The characteristics of fatigue crack growth in the base metal of carbon and stainless steel, in the carbon and stainless steel sides located in the neighborhood of welded portion (carbon/stainless steel), respectively and welded portion, are investigated. The results show that the crack growth in the welded portion (carbon/stainless steel) is an average value of the crack growths in the carbon and stainless steel respectively located in the neighborhood of the welded portion. It is found that the crack growth in the welded portion is not significantly different from those in the carbon and stainless steel sides. Hence it can be concluded that the structure welded with two different materials wold not impede the integrity based on the fatigue crack growth.

  • PDF

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

Measurement and assessment of imperfections in plasma cut-welded H-shaped steel columns

  • Arasaratnam, P.;Sivakumaran, K.S.;Rasmussen, Kim J.R.
    • Steel and Composite Structures
    • /
    • 제6권6호
    • /
    • pp.531-555
    • /
    • 2006
  • H-shaped welded steel column members are fabricated by welding together pre-cut flanges and the web. Modern fabricators are increasingly using plasma-cutting technique instead of traditional flame cutting. Different fabrication techniques result in different degrees of geometric imperfections and residual stresses, which can have considerable influence on the strength of steel columns. This paper presents the experimental investigation based temperature profiles, geometric imperfections, and built-in residual stresses in plasma cut-welded H-shaped steel column members and in similar flame cut-welded H-shaped steel columns. Temperature measurements were taken during and immediately after the cutting operations and the welding operations. The geometric imperfections were established at closely spaced grid locations on the original plates, after cutting plates into plate strips, and after welding plate strips into columns. Geometric imperfections associated with plasma cut element and members were found to be less than those of the corresponding elements and members made by flame cutting. The "Method of Section" technique was used to establish the residual stresses in the plate, plate strip, and in the welded columns. Higher residual stress values were observed in flame cut-welded columns. Models for idealized residual stress distributions for plasma cut and flame cut welded sections have been proposed.

PLASTICITY-BASED WELDING DISTORTION ANALYSIS OF THIN PLATE CONNECTIONS

  • Jung, Gonghyun;Tsai, Chon L.
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.694-699
    • /
    • 2002
  • In autobody assembly, thin-wall, tubular connections have been used for the frame structure. Recent interest in light materials, such as aluminum or magnesium alloys, has been rapidly growing for weight reduction and fuel efficiency. Due to higher thermal expansion coefficient, low stiffness/strength, and low softening temperature of aluminum and magnesium alloys, control of welding-induced distortion in these connections becomes a critical issue. In this study, the material sensitivity to welding distortion was investigated using a T-tubular connection of three types materials; low carbon steel (A500 Gr. A), aluminum alloy (5456-H116) and magnesium alloy (AZ91C-T6). An uncoupled thermal and mechanical finite element analysis scheme using the ABAQUS software program was developed to model and simulate the welding process, welding procedure and material behaviors. The predicted angular distortions were correlated to the cumulative plastic strains. A unique relationship between distortion and plastic strains exists for all three materials studied. The amount of distortion is proportional to the magnitude and distribution of the cumulative plastic strains in the weldment. The magnesium alloy has the highest distortion sensitivity, followed by the other two materials with the steel connection having the least distortion. Results from studies of thin-aluminum plates show that welding distortion can be minimized by reducing the cumulative plastic strains by preventing heat diffusion into the base metal using a strong heat sink placed directly beneath the weld. A rapid cooling method is recommended to reduce welding distortion of magnesium tubular connections.

  • PDF

연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석 (Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate)

  • 배강열
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.